博碩士論文 89321002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.189.2.122
姓名 朱世琪(Shih-Chi Chu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究
(The Interactions between Phosphatidylcholine Vesicles and Ionic Surfactants : Temperature and PEG-Lipid)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化★ 膽固醇與膽鹽對微脂粒穩定度的影響
★ 電解質溶液的表面張力-蒙地卡羅模擬法★ 稀薄聚電解質溶液中的反離子凝聚現象
★ 溫度不敏感性之電動力學行為於毛細管區域電泳★ 以熱力學性質定義帶電粒子的電荷重正化現象
★ 聚乙二醇與界面活性劑的作用★ 聚電解質溶液中的反離子凝聚現象
★ 聚電解質在中性高分子溶液中的泳動行為★ 在聚電解質溶液中的有效電荷
★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討★ 多價鹽類於聚電解質溶液中的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究
學生:朱世琪 指導教授:曹恒光
國立中央大學化學工程與材料工程研究所
中文摘要
由於微脂粒的特殊結構和性質,所以常被應用於當作控制釋放的載體,然而在體內會受到生物型的界劑影響,導致溶解現象發生。一般而言,界劑溶解微脂粒溶解過程可區分成微泡區、共存區、及混合微胞區。本論文將探討微泡區中,脂質和水相環境的界劑分佈平衡常數K。
本研究以擠壓法(extrusion)製備實驗所需要的微脂粒且皆不含有鹽類與緩衝溶液,並透過電導度量測來探討離子型界劑對微脂粒的溶解作用。所使用的六種界劑包含不同的疏水基鏈長 (C10-C16)及陰陽二種離子性頭基,並在三種溫度及添加PEG-脂質的條件下進行實驗。基於界劑溶解微脂粒的機制,界劑會嵌入脂雙層的行為,如同電荷會束縛於其中,因此界劑溶液含有微脂粒會造成電導度的下降,所以我們藉由電導的變化可決定界劑的K及Reb。所得到熱力學參數皆都能符合熱力學限制(J. Chem. Phys. 2001, 115, 8125)。
實驗結果發現K值會隨著溫度升高而下降,其標準化學勢(chemical potential)差異的級數為kT,並且隨著疏水基鏈長的增加而上升,這結果表示每一個在水相的界劑分子其平均作用能大於在脂質相的。改變溫度會使得界劑嵌入脂雙層勝於形成微胞,因此其溶解的能力會隨著K值上升而下降。對於特別的極性頭基,其分佈常數隨著鏈長增加而增加。根據實驗結果發現,符合熱力學的預期,界劑的每一個烷基內能級數為kT。
由於立體障礙力使得包含PEG –lipid的微脂粒其物理穩定性增加,從生物穩定性來看添加PEG –lipid的微脂粒減少了被嗜菌細胞吞噬的機會。在我們的研究系統中若添加1 %的PEG(2000)–lipid,則其粒徑比無添加PEG—lipid的微脂粒較小。此外,熱力學參數K和Reb皆上升。實驗結果顯示添加PEG-lipid可降低界劑在脂質相的平均自由能,導致得到較大的平衡常數,且提升微脂粒抵抗界劑溶解的能力。因此我們認為添加PEG-lipid可提供另一個穩定的機制。
摘要(英) The Interactions between Phosphatidylcholine Vesicles and Ionic Surfactants:
Effects of Temperature and PEG-Lipid
Student: Shis-Chi Chu Advisor: Heng-Kwong Tsao
Department of Chemical and Materials Engineering
National Central University
ABSTRACT
Liposomes are widely used as drug carriers due to their special structure and properties. Nevertheless, the in vivo stability of liposomes poses limitations on their applications. For example, an enough amount of biosurfactant can solubilize liposomes. In general, liposome solubilization can be described by the three-stage hypothesis, including vesicular regime, vesicle-micelle coexistence, and mixed micellar regime. In this thesis, we focus on the first stage and study the partition of ionic surfactant between the bilayer phase and the aqueous phase.
Phosphatidylcholine vesicles are prepared by the extrusion method without addition of buffer and salt. The bilyer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of of six ionic surfactants are then determined by conductivity measurements, which are based on the fact the vesicle acts as a trap of charge carriers. The main purpose of the thesis is to investigate the effects of temperature and PEG-lipid on the partition coefficient. The experimental data can be well represented by the simple thermodynamic model and the thermodynamic parameters satisfy the thermodynamic consistency.
The partition coefficient is found to decline with increasing temperature. This consequence indicates that the mean interaction energy per surfactant molecule in the aqueous phase mw0 is greater than that in the bilayer mb0. The difference of the mean interaction energy is O(kT) and rises as the chain length is increased. Because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles, the solubilizing ability Reb also decreases in accord with the partition coefficient. For a specified hydrophilic head, we observe that the partition coefficient grows with the alkyl chain length. According to our experimental results, the increment of the mean interaction energy per alkyl group is O(kT), which agrees with the thermodynamic prediction.
It is known that the physical stability of a liposome containing a few PEG-lipid is enhanced due to the steric repulsion. Biologically, a stealth liposome is also obtained because PEG-lipid provides the opportunity of escaping from macrophage uptake. In this study, a liposome containing 1% PEG (2000)-lipid is prepared. In comparison with liposomes without PEG-lipid, the mean radius of such liposomes is smaller. In addition, the thermodynamic parameters K and Reb are increased. This result indicates that PEG-lipid lowers the mean interaction energy in the bilayer phase and therefore leads to a higher partition coefficient. However, the ability of resisting surfactant solubilization is also enhanced. Therefore, we conclude that addition of PEG-lipid provides another stability mechanism.
關鍵字(中) ★ PEG-脂質
★ 溫度
★ 離子型界面活性劑
★ 微脂粒
★ 電導度
關鍵字(英) ★ Conductivity
★ PEG-lipd
★ liposome
★ ionic surfactants
★ temperature
論文目次 Abstract (in Chinese)……………………………………….Ⅰ
Abstract (in English)………………………………………..Ⅲ
Acknowledgment……………………………………………Ⅴ
Content………………………………………………………Ⅵ
Table captions………………………………………………..Ⅷ
Figure captions………………………………………………ⅩⅠ
Chapter 1 General Introduction of Liposomes
1-1 Introduction …………………………….…………………..1
1-2 Lipid ………………………………………………….…….3
1-3 Liposome …………………………………………………...7
1-4 Surfactants………………………………………………….11
1-5 PEG-lipid…………………………………………………...15
Chapter 2 Interaction of Liposomes with Surfactants
2-1 Solubilization model. ……………………………………..16
2-2 Conductivity measurements of Dw and Db. ……………….18
Chapter 3 Experiment Section
3-1 Chemicals …………………………………………………24
3-2 Equipments ………………………………………………..26
3-2-1 Conductometry …………………………………….27
3-2-2 Dynamic light scatter ………………………………30
3-3 Methods
3-3-1 Preparation of liposomes …….……….…………….33
3-3-2 Diameter measurements. …………………………...33
3-3-3 Conductivity measurements………………………...33
Chapter 4 Results and Discussion
4-1 Effect of temperature………………………………………34
4-2 Effect of PEG-lipid ………………………………………..38
Chapter 5 Conclusions …………………………….…………40
Reference…………………………….…………………………58
參考文獻 Reference
1. Bangham A. D., M. M. Standish, and J.C.Watkins. 1965. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids. Journal of Molecular Biology. 13: 238-252.
2. Frezard F., A. Garniersuillerot. 1998. Permeability of Lipid Bilayer to Anthracycline Derivatives. Role of the Bilayer Composition and of the Temperature. Biochim. Biophys. Acta. -Lipids and Lipid Metabolosm, 1389: 13-22.
3. Chang R., S. Nir, and F. Poulain. 1998. Analysis of Binding and Membrane Destabilization of Phospholipid Membranes by Surfactant Apoprotein B. Biochim. Biophys. Acta. - Biomembranes, 254:1371-.
4. Lasic D., D. Needham.1995. The “Stealth” Liposome: A Prototypical Biomaterial. Chemical Reviews, 95: 2601-.
5. Trevino L., F. Frezard, J. Rolland, M. Postel, and J. Riess. 1994. Novel Liposomes Systems Based on the Incorporation of (perfluoroalkyl) Alkenes (FmHnE) into the Bilayer of Phospholipid Liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 88: 223-.
6. Jones, M. N. and D. Chapman. 1995. Micelles, Monolayers, and Biomembranes. Wiley-Liss, New York.
7. N. Albena, Nikolova, Malcol N. Jones. 1998. Phospholipid Free Thin Liquid Films with Grafted Poly(ethylene glycol)-2000: Formation, Interaction Forces and Phase States. Biochem. Biophys. Acta, 1372:237-243.
8. Markus J., and K. Edwsrds. 2000. Interactions between Nonionic Surfactants and Sterically Stabilized Phophatidyl Choline Liposomes. Lagmuir, 16: 8632-8642.
10. Lasic D., 1993. Liposome: From Physics to Applications. Elsevier, New York.
11. Janich M., J. Lange, H. Graener, and R. Neubert. 1998. Extended light scattering investigations on Dihydroxy bile salt micelles in low-salt aqueous solutions. J. Phys. Chem. B. 102: 5957-5962.
12. Garidel P., A. Hildebrand, R. Neubert, and A. Blume. 2000. Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimrtey. Langmuir. 16: 5267-5275.
13. Gouin. S. and X.X. Zhu. 1998. Fluorescence and NMR Studies of the Effect of a Bile Acid Dimer on the Micellization of Bile Salts. Langmuir. 14: 4025-4029.
14. Jover, A. F. Meijide, E. Rodriguez Nunez, and J. Vazquez Tato. Aggregation Number for Sodium Dexycholate from Steady-State and Time-Resolved Fluorescence. Langmuir. 13: 161-164.
15. Bivas I., M. Winterhalter, P. MELEARD and P. BOTHOREL. 1998. Elasticity of bilayer containing PEG lipids. Europhys. Lett. 41: 261-266.
16. Belsito S., Rosa B. and Liugi S. 1998. Sterically stabilized liposomes of DPPC/DPPE-PEG: 2000. A spin label ESR and spectrophotometric study. Biophysical Chemistry. 75: 33-43.
17. Johnsson M. 2001. Sterically Stabilized Liposomes and Related Lipid Aggregates. Acta University Upsaliensis.
18. Lichtenberg D. 1985. Characterization of the solubilization of lipid bilayers by surfactants. Biochim. Biophys. Acta. 821: 470-478.
19. Kragh-Hansen U., M. le Maire, and J. V. Moller. 1998. The Mechanism of Detergent Solubilization of Liposomes and Pretein-Containing Membranes. Biophys. J. 75: 2932-2946.
20. Almog S. T., Kushnir, S. Nir, D. Lichtenberg. 1986. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry. 25:2597-2605.
21. Almog, S. B. J. Litman, W. Wimley, J. Cohen, E. J. Wachtel, Y. Barenholz, A. Ben-Shaul, and D. Lichtenberg.1990. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry. 29:4582-4592.
22. Edwards K. and M. Almgren. 1991. Solubilization of lecithin vesicles by C12E8 structural transitions and temperature effects. J. Colloid Interface Sci. 147:1-21.
23. Schurtenberger P., N. Mazer, and W. Kanzig. 1985. Micelle to vesicle Transition in Aqueous Solutions of Bile salt and Lecithin. J. Phys. Chem. 89: 1042-1049.
24. Maza A. de la and J.L. Parra. 1995. Solubilizing effects caused by alkyl pyridinium surfactants in phosphatidylcholine liposomes. Chemistry and Physics of lipids. 77: 79-87.
25. Hunter R. J. 1993. Introduction to Modern Colloidal Science. Oxford, University Press Inc., New York.
26. Heeklotz H. and J. Seelig. 2000. Correlation of Membrane/Water Partition Coefficients of Detergents with the Critical Micelle Concentration. Biophy. J. 78: 2432-2440.
27. Israelachvili J., 1992. “Intermolecular and Surface Forces”, Academic Press, London.
28. Tsao H. K., and Tzeng W. L. 2001. The Interactions Between Ionic Surfactants and Phosphatidylcholine Vesicles: Conductometry.. J. Chem. Phys. 115: 8125-8132.
指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2002-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明