博碩士論文 89321008 詳細資訊


姓名 蕭麗娟(Li-Chan Shiau)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
(A study in the reactions between SnAgCu lead-free solders and Au/Ni surface finish in BGA packages.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
含鉛銲料如PbSn eutectic 一直是微電子工業最主要、最常用的銲料。但歐盟最近提議將在2008年起禁用含鉛銲料,日本各大電子公司如Panasonic、Fujitsu等公司也計畫在2002年前後主動的改換製程至無鉛系統。一般均認為此次改用無鉛的趨勢是無可避免且勢必在幾年內完成。過去十餘年來,產學界一直試圖尋找能夠直接替代(Drop-In Replacement) PbSn eutectic 的無鉛銲料,但一直無法找到完全令人滿意的替代品。最近因為改用無鉛銲料的時程實在十分緊迫,美國工業組織NEMI已達成共識,將以SnAgCu系列銲料來取代PbSn eutectic 銲料在reflow上的應用。目前文獻中有關SnAgCu的各項性質資料十分缺乏,本計畫之主要目的即是探討SnAgCu無鉛銲料與基材表面處理層(Surface Finish)之反應。
由於SnAgCu系列銲料有很多不同組成,而以何種組成為最理想,目前並無定論。因此本研究將探討Ag、Cu濃度對界面反應之影響,藉以了解就反應而言Ag、Cu之理想組成。而目前Au/Ni是最常用的surface finish,目前也使用在多種覆晶之金屬化層上。因此本研究之總目標是去深入了解不同Ag、Cu濃度之SnAgCu與Au/Ni 發生反應時每一階段的現象及其機制。
本研究中BGA構裝基板之墊層為電鍍0.8 mm Au / 6 mm Ni表面處理的型式,錫球銲點的組成為:Sn-3.5Ag、Sn-3.5Ag-0.75Cu、Sn-xAg-0.5Cu ( x=1/3/4 wt.%)、Sn-3Ag-yCu ( y=0/0.3/0.5/0.7/1 wt.%)。在銲接後,並進行180oC,0-2500小時之固態熱處理。在不同的熱處理時間後,測試其剪力強度。
本研究發現SnAgCu銲料中Cu含量的微小差異,會影響迴銲後所產生的介金屬種類與生長形態,也影響銲點的剪力強度。當銲料中沒有Cu時(例如使用Sn-3Ag),迴銲後在銲點界面處所產生的介金屬是Ni3Sn4。當Cu濃度較高時(例如使用Sn-3Ag-1Cu),所產生的介金屬則是(Cu1-p-qAupNiq)6Sn5。在經過固態熱處理後,(Cu1-p-qAupNiq)6Sn5下方會多產生一層(Ni1-yCuy)3Sn4。當Cu濃度是0.5 wt.% (例如使用Sn-3Ag-0.5Cu),迴銲後產生的介金屬是(Ni1-yCuy)3Sn4與(Cu1-p-qAupNiq)6Sn5共同存在界面上。總而言之,隨銲料之Cu濃度的升高,銲接接合物之生長情形將由原先單一、且連續的(Ni1-yCuy)3Sn4層,逐漸轉變為(Cu1-p-qAupNiq)6Sn5與(Ni1-yCuy)3Sn4之混合型式。若Cu的濃度更高時,則銲接接合物將轉變為一連續的(Cu1-p-qAupNiq)6Sn5層。換句話說,隨所採銲料之Cu濃度的不同,則界面上之生成物種類與其生長形態亦有所不同。亦即銲料之Cu濃度的高低,將可直接影響銲接界面之接合物的種類與生長形態。此一結果在工業應用上極為重要,因為界面之介金屬種類,勢必影響到銲點的強度。因此工業界在銲接時,必須極為嚴格監控銲料中Cu濃度,以利生產具一致品質之高強度銲點。而本研究最主要之目的在更進一步探討上述現象之機制。
摘要(英) ABSTRACT
Lead-bearing solders, such as the PbSn eutectic, have been used extensively in the microelectronic industry for a long period of time. Recently, the European Union proposed to phase out the lead-bearing solders by January, 2008. Moreover, many major Japanese electronic companies, such as Panasonic and Fujitsu, have decided to switch voluntarily to lead-free processes by the year of 2002. It is generally believed that this lead-free transition is unevitable this time. Past research by the academia and industry indicated that a drop-in replacement for PbSn eutectic is difficult to find, if not impossible. Due to the extremely tight time schedule to go lead-free, the U.S. industry had reached a consensus to use SnAgCu series of solders to replace the PbSn eutectic, despite the fact that the literature for SnAgCu solders is still seriously lacking. The main objective of this proposal is then to study the reactions between such lead-free solders with the Au/Ni surface finish used in the industry.
The SnAgCu solders are a series of solders with broad compositions. We propose to study the effect of the Cu concentration on the interfacial reation. The Au/Ni surface finish is the most common and important one for solder pads and bumps in the industry now. Therefore, the overall objective is to study in depth the reactions between the SnAgCu solders with various Cu concentration and the Au/Ni.
The contact pads for solder balls on the PBGA substrates used in this study have the 0.8mm-Au / 8mm-Ni surface finish by electroplating. The solder composition, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-xAg-0.5Cu (x=1/3/4 wt.% ), and Sn-3Ag-yCu (y=0/0.3/0.5/0.7/1 wt.%), were used, and their performances were compared. After reflow, the solder joints were subjected to aging at 180 oC for time up to 2500 hrs. The shear strengths of the solder joints with different aging time were then tested.
It was found that the Cu concentration in the SnAgCu ternary solder has a very strong effect on the compound formation and the shear strength in solder joints with the Au/Ni surface finish. When there was no Cu (ex:Sn-3Ag), the reaction product was Ni3Sn4. When the Cu concentration was high (ex:Sn-3Ag-1Cu), the reaction product was (Cu1-p-qAupNiq)6Sn5 right after reflow, and two intermetallic compounds (Cu1-p-qAupNiq)6Sn5 and (Ni1-yCuy)3Sn4 formed after aging at 180oCfor 2500 hrs. When the Cu concentration was 0.5 wt.% (ex:Sn-3Ag-0.5Cu), both Ni3Sn4 and (Cu1-p-qAupNiq)6Sn5 were present near the interface right after reflow, and there was a layer of solder between these two intermetallic compounds. After aging, a layer of (Cu1-p-qAupNiq)6Sn5 over a layer of (Ni1-yCuy)3Sn4 formed at the interface.
關鍵字(中) ★ 無鉛銲料
★ 錫銀銅銲料
★ 球矩陣封裝
★ 界面反應
關鍵字(英) ★ Interfacial Reactions
★ Lead-Free Solders
★ Ball Grid Array Package
★ SnAgCu solders
論文目次 目 錄 頁數
中文摘要 I
英文摘要 III
目 錄 Ⅴ
圖 目 錄 VIII
表 目 錄 XV
第 一 章 緒論
1.1 研究背景 1
1.1.1 微電子封裝 1
1.1.2 球矩陣封裝(BGA) 7
1.1.3 銲接 11
1.1.4 無鉛銲料的現況 15
1.1.5 SnAgCu無鉛銲料 19
1.2 研究目的 21
第 二 章 文獻回顧
2.1 37Pb-63Sn銲料與Au/Ni/Cu墊層反應文獻回顧 22
2.1.1 金脆效應 22
2.1.2 介金屬種類 30
2.2 SnAgCu系列銲料文獻回顧 34
2.2.1 SnAg銲料與Au/Ni/Cu墊層反應 34
2.2.2 SnAgCu銲料與Au/Ni/Cu墊層反應 37
2.3 剪力強度測試文獻回顧 38
2.3.1 銲點可靠度 38
2.3.2 37Pb-63Sn剪力強度測試文獻回顧 38
2.4 實驗規劃 41
2.4.1 金相實驗規劃 41
2.4.2 剪力強度實驗規劃 42
第 三 章 實驗步驟與方法
3.1 實驗預備 43
3.1.1 銲料的組成 43
3.1.2 實驗用Au/Ni/Cu墊層 44
3.1.3 實驗用迴銲曲線(Reflow Profile) 47
3.2 實驗步驟 50
3.2.1 迴銲前BGA試片準備,及植上銲錫球 50
3.2.2 迴銲反應(Reflow) 實驗步驟 50
3.2.3 熱處理反應(Aging) 實驗步驟 51
3.3 金相分析 51
3.3.1 金相試片的製作 51
3.3.2 光學顯微鏡(OM)觀察 52
3.3.3 掃描式電子顯微鏡(SEM)觀察 52
3.3.4 電子探測分析儀(EPMA)組成分析 53
3.4 剪力強度分析 54
3.4.1 剪力強度測試程序 54
第 四 章 實驗結果
4.1 銲料中不同Cu 含量的影響(一) 58
4.1.1 迴銲後SEM界面金相觀察 58
4.1.2 熱處理後SEM界面金相觀察 62
4.1.3 剪力強度測試的實驗結果 69
4.2 銲料中不同Cu 含量的影響(二) 72
4.2.1 迴銲後SEM界面金相觀察 72
4.2.2 熱處理後SEM界面金相觀察 75
4.2.3 剪力強度測試的實驗結果 103
4.3 銲料中不同Ag 含量的影響 105
4.3.1 迴銲後SEM界面金相觀察 105
4.3.2 熱處理後SEM界面金相觀察 107
4.3.3 剪力強度測試的實驗結果 109
第 五 章 討論與結論
5.1 銲料中不同Cu 含量的影響 112
5.1.1 Au脆效應 112
5.1.2 介金屬種類的變化 113
5.1.3 Ni層消耗 113
5.1.4剪力強度測試的實驗結果 114
5.2 銲料中不同Ag 含量的影響 117
5.2.1介金屬種類的變化 117
5.2.2剪力強度測試的實驗結果 117
參考文獻 118
參考文獻 參考文獻
[AND] I. E. Anderson, F. G. Yost, J. F. Smith, C. M. Miller, and R. L. Terpstra, United States Patent, Patent No.5527628, 1996.
[BAN] K. Banerji, R. F. Darveaux, P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, Microstructures and Mechanical Properties of Aging Materials, TMS, Warrendale, Pa., p.431, 1993.
[CIR] Circuits Assembly, IC Insights, 1999.
[COY] R. J. Coyle, P. P. Solan, A. J. Serafino, and S. A. Gahr, Proceedings of 50th Electronic Components and Technology Conference, Las Vegas, NV, USA, September, p.160, 2000.
[DAR] R. F. Darveaux, K. Banerji, A. Mawer, and G. Dody, Ball Grid Array Technology, ed. J. K. Lau, (New York, McGraw-Hill, 1995), p.379.
[DOD] G. Dody and T. Burnette, Surf. Mount. Tech., p.39, May, 1996.
[FOS] F. G. Foster, ASTM STP 319, p.13, 1962.
[HAR1] W. B. O’Hara and W. C. Lee, Surf. Mount. Tech., p.44, January 1996.
[HAR2] W. B. O’Hara and W. C. Lee, Int. J. Microcircuits and Elect. Packaging, 19, p.190, 1996.
[HO1] C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater., 28, p.1231, 1999.
[HO2] C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. Electron. Mater., 29, p.1175, 2000.
[HO3] C. E. Ho, W. T. Chen, and C. R. Kao, J. Electron. Mater., 30, p.379, 2001.
[HUN] S. C. Hung, P. J. Zheng, S. C. Lee, Proc. 24th IEMT, p.23, 1999.
[IPC] IPC Roadmap for Lead-Free Electronics Assemblies, 2nd draft, IPC, Northbrook, IL, November 1999.
[LEE] N. C. Lee, Soldering & Surface Mount Technology, No. 26, p.65, 1997.
[LIU] C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, in press, J. Electron. Maters., 2001.
[LU] S. W. Lu, R. H. Uang, K. C. Chen, H. T. Hu, L. C. Kung, and H. C. Hung, IEEE/CPMT Int’1 Electronic Manufacturing Technology Symposium, p.127, April, 1999.
[MEI] Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.952, 1998.
[MOO] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, J. Electron. Mater., 29, p.1122, 2000.
[MOR] J. E. Morris, Workshop, “The Design and Processing Technology of Electronic Packaging”, 1997.
[NCM] Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, 3025 Boardwalk, Ann Arbor, Michigan, 1997.
[NEM] National Electronics Manufacturing Initiative (NEMI) Lead-Free Readiness Task Force Report, NEMI, 1999.
[KAN1] S. K. Kang and V. Ramachandran, Scripta Metall., 14, p.421, 1980.
[KAN2] S. K. Kang, R. S. Rai and S. Purushothaman, J. Electron. Mater., 25, p.1113, 1996.
[PCI] Printed Circuits Federation/International Tin Research Institute Joint Statement, PCIF/ITRI, 1999.
[SEN] Senate Bills S.729 and S.2637 by Senator Reid;House Bills H.2479 and H.2922 by Representative Cardin.
[SUB] K. N. Subramanian, T. R. Bieler, and J. P. Lucas, J. Electron. Mater., 28, p.1176, 1999.
[TRU] B. Trumble, IEEE Spectrum, p.55, 1998.
[WIL] R. N. Wild, NEPCON, p.198, 1968.
[YAM] M. Yamashita, S. Tada, and K. Shlokawa, United States Patent, Patent No. US 6179935 B1, 2001.
[ZRI] A. Zribi, R. R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Tova, E. J. Cotts, J. Clum, R. Erich, A. Primavera, G. Westby, R. J. Coyle, and G. M. Wenger, IEEE Electron. Comp. Tech., 23, p.383, 2000.
[咎世蓉] 咎世蓉, “無鉛銲錫之可靠度試驗”, 電子與材料, 第9期, p.96。
[高振宏] 高振宏, 何政恩, “一種可抑制易脆之Au介金屬於銲點中生成之新技術,” 中華民國專利, No.471988。
[林志豪] 林志豪碩士論文, 清華大學材料科學及工程研究所, 2000。
[林安宏] 林安宏碩士論文, 中央大學化學工程研究所, 2001。
[黃家緯] 黃家緯碩士論文, 成功大學材料科學及工程研究所, 2000。
[陳國銓] 陳國銓, IC封裝技術, 工業材料, 第158期, p.78, 2000。
[謝宗雍] 謝宗雍, 陳力俊,“微電子材料與製程”, 中國材料科學學會, p.385, 2000。
[張淑如] 張淑如,“鉛對人體的危害”, 勞工安全衛生簡訊, 第12期, p.17, 1995。
[彭錢塘] 彭錢塘,“電路板無鉛銲墊之現況”, 電路板會刊, 第12期, p.75,
[梁元彰] 梁元彰,“無鉛銲錫合金概況”, 電腦與通訊, 第90期, p.45, 2000。
[賴玄金] 賴玄金, 電子與材料, 第8期, p.111, 2000。
[劉家明] 劉家明碩士論文, 中央大學化學工程研究所, 2000。
指導教授 高振宏(C. R. Kao) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡