博碩士論文 89321009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.144.48.135
姓名 嚴榆翔(Yu-Hsiang Yen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚苯胺與聚苯乙烯殼核複合材料之研究
(Chraracterization of polyaniline and polystyrene core-shell composite)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 導電高分子與聚胺基甲酸酯複合材料之研究
★ 在孔道均一的模板內合成聚苯胺奈米管★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析
★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,我們製備單分散聚苯胺/聚苯乙烯核殼乳膠。以苯乙烯為單體,2-2-azobis-isobutyronitrile,polyvinyl- pyrrolidone為起始劑及穩定劑以分散聚合的方法,合成單分散的非離子型聚苯乙烯與苯乙烯-苯乙烯磺酸鈉共聚物乳膠。並以聚苯乙烯為單體,potassium peroxodisulfate為起始劑,以無乳化劑乳化聚合的方法,合成單分散的陰離子型聚苯乙烯乳膠。以聚苯乙烯乳膠為核心,合成聚苯胺為外殼的殼核乳膠複合材料,並以SEM、TEM、IR、界面電位儀、元素分析、XPS及導電度測量鑑定所合成的材料。
藉由苯乙烯-苯乙烯磺酸鈉共聚物(聚苯乙烯共聚物)乳膠的SO3基及陰離子型聚苯乙烯乳膠的負電荷可以親水又可以吸引苯胺單體,使苯胺單體吸附在苯乙烯表面上,再聚合可得均勻分佈的殼核結構,我們可以控制苯胺單體與聚苯乙烯的重量比,來控制聚苯胺包覆在聚苯乙烯表面上的量,進而改進導電度。
本研究所合成的乳膠,粒徑分佈不均一,可能會造成所包覆的聚苯胺無法明確的比較其厚薄,但由其顏色、元素分析、XPS分析結果顯示,聚苯胺確實包覆上去。
苯乙烯-苯乙烯磺酸鈉共聚物乳膠及陰離子型聚苯乙烯乳膠,因為表面帶負電值較高的情況下,對於苯胺的吸附,有較大的幫助,聚合後的聚苯胺在表面分佈較均勻,形成平滑的表面。在含相同含量的苯胺單體母液下聚合,導電度也比較高。使用分散聚合所得的非離子型聚苯乙烯乳膠與苯乙烯-苯乙烯磺酸鈉共聚物乳膠,其乳膠粒子的穩定性較高。所合成出的殼核乳膠結構中,聚苯胺/聚苯乙烯共聚物殼核乳膠由SEM與TEM相片觀察,其粒徑分佈較不均一,但懸浮液穩定,導電度較高。均一粒徑的改善,是未來研究的方向。
摘要(英) In this study, a feasible route for preparing polyaniline/polystyrene core shell latex was developed. The monodisperse nonionic polystyrene latex and poly(styrene co sodium styrene sulfonate) latex were synthesized by dispersion polymerization method, using styrene as monomer, polyvinylpyrrolidone as stabilizer, 2-2-azobis-isobutyronitrile as initiator. The monodisperse anionic polystyrene latex was also synthesized by emulsifier-free emulsion polymerization method, using styrene as monomer, potassium peroxodisulfate as initiator. Then aniline was polymerized on the surface of polystyrene latex. The core-shell composites were formed and studied by SEM, TEM, IR, Zeta potential, elemental analysis, XPS and conductivity measurements.
Anilinium ions are adsorbed on the surface of polystyrene latex by columbic interaction between the sulfonate groups of poly(styrene co sodium styrene sulfonate) and negative charges on anionic polystyrene latex. After polymerization, more uniform polyaniline shell structures were obtained. We can control the amounts of polyaniline by adjusting the weight ratio of aniline monomer and polystyrene latex in mother liquids. The conductivity of the core-shell composites can be improved.
Although the particle sizes of the core and core-shell composites are not very uniform, the thickness of polyaniline shell in the core-shell composites cannot be determined, but the color, elemental analyses, and XPS results show that polyaniline is formed on polystyrene latex.
Polymerization of aniline in mother liquid containing the same quantity of aniline monomers on more negatively charged polystyrene latex results in more conductive composites. The suspensions of nonionic polystyrene latex and poly(styrene co sodium styrene sulfonate) latex are more stable than that of the anionic polystyrene latex. SEM and TEM photographs indicate the distribution of the particle sizes is wider for polystyrene copolymer latex, but the stability of the suspension and conductivity are higher for the composites. Improvement of the uniformity of the latex particles will be the objective of future study.
關鍵字(中) ★ 乳膠
★ 殼核材料
★ 複合材料
★ 導電高分子
★ 聚苯胺
★ 聚苯乙烯
關鍵字(英) ★ core-shell
★ latex
★ polystyrene
★ conductive polymer
★ polyaniline
★ composite
論文目次 中文摘要………………………………………………………………….I
英文摘要…………………………………………………………………II
表目錄…………………………………………………………………..VI
圖目錄………………………………………………………………...VIII
第一章 緒論……………………………………………………………1
1-1 研究目的…………………………………………………………….1
1-2 導電高分子………………………………………………………….2
1-2-1 導電性高分子的聚合方式…………………………………..3
1-2-2 導電性高分子的摻雜………………………………………..4
1-2-3 導電性高分子的應用………………………………………..5
1-3 聚苯胺……………………………………………………………...13
1-3-1 聚苯胺的構造………………………………………………13
1-3-2 聚苯胺的紅外光吸收光譜…………………………………16
1-3-3 聚苯胺的化學分析電子光譜………………………………17
1-3-4 聚苯胺的合成………………………………………………20
1-3-5 聚苯胺的穩定性……………………………………………21
1-3-6 聚苯胺的表面形態…………………………………………22
1-4 聚苯乙烯乳膠的合成……………………………………………...22
1-4-1 懸浮聚合法…………………………………………………23
1-4-2 乳化聚合法…………………………………………………24
1-4-4 乳化聚合法與無乳化劑乳化聚合法之比較………………31
1-5 殼核複合材料……………………………………………………...31
第二章 實驗部分……………………………………………………..33
2-1 化學藥品…………………………………………………………...33
2-2 實驗儀器…………………………………………………………...34
2-3 實驗方法…………………………………………………………...36
2-3-1 苯胺及苯乙烯單體的純化…………………………………36
2-3-2 聚苯乙烯的製備……………………………………………36
2-3-3 聚苯乙烯共聚物之製備……………………………………37
2-3-4 聚苯胺包覆聚苯乙烯複合材料之製備……………………37
2-4 實驗分析…………………………………………………………...38
2-4-1 紅外光譜測定………………………………………………38
2-4-2 元素分析……………………………………………………38
2-4-3 化學分析影像能譜分析……………………………………38
2-4-4 Zeta potential測定…………………………………………..39
2-4-5 掃瞄式電子顯微鏡觀察……………………………………40
2-4-6 穿透式電子顯微鏡觀察……………………………………40
2-4-7 導電度測定…………………………………………………40
第三章 結果與討論…………………………………………………..42
3-1 化學結構分析……………………………………………………...42
3-2 化學組成分析……………………………………………………...45
3-3 乳膠粒子界面電位測定………………………………………...…71
3-4 表面形態及粒徑大小的觀察……………………………………...74
3-5 導電度測定………………………………………………………...99
3-6 綜合討論……………………………………………………….....102
第四章 結論…………………………………………………………103
第五章 參考文獻……………………………………………………104
參考文獻 1. R. B. Seymour, New York: Plenum Press, Conductive polymers, 1-4.
2. R. B. Seymour, New York: Plenum Press, Conductive polymers, 209-222.
3. D. Kumar and R. C. Sharma, Eur. Polym. J., 34 (8), 1053-1060 (1998).
4. R. B. Seymour, New York: Plenum Press, Conductive polymers, 171-180.
5. R. B. Seymour, New York: Plenum Press, Conductive polymers, 95-114.
6. J. Stejskal and P. Kratochvil, Polymer, 37 (2), 367-369 (1996).
7. E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo, Electrochemistry Communications, 3, 229-233 (2001).
8. S. Uemura, K. Teshima, Synth. met., 101, 701-702 (1999).
9. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 227-233.
10. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 149-153.
11. A. O. Patil, Y. Ikenoue, F. Would and A. J. Heeger, J. Am. Chem. Soc., 109, 1858 (1987).
12. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 71-75.
13. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 23-38.
14. R. B. Seymour, New York: Plenum Press, Conductive Polymers, 77-84.
15. R. D. Surville, M. Jozefowicz, Electrochim. acta., 13, 1451-1458. (1968).
16. M. C. Bernard, V. T. Bich, Synth. met., 101, 811-812 (1999).
17. A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. met., 18, 341-346
(1987).
18. A. Malinauskas, R. Holze, Synth. met., 97, 31-36 (1998).
19. S. P. Armes and J. F. Miller, Synth. met., 22, 385-393 (1988).
20. K. Nishio, M. Fujimoto, Journal of Power Sources, 56, 189-192
(1995).
21. K. W. Evelyn Lai, P. D. Beattie, S. Holdcroft, Synth. met., 84, 87-88 (1997).
22. B. Wang, J. Tang, Synth. met., 13, 329-334 (1986).
23. K. Koziel, M. Lapkowski and S. Lefrant, Synth. met., 69, 217-218 (1995).
24. P. Rannou, M. Nechtschein, Synth. met., 84, 755-756 (1997).
25. D. Zhang, J. H. Hwang and S. C. Yang*, Synth. met., 29, E251-E256 (1989).
26. I. J. Ball, S. C. Huang, T. M. Su, Synth. met., 799-800.
27. M. C. Bernard, A. H. Goff, Synth. met., 81, 215-219 (1996).
28. S. Mu, H. Xue, Sensors and Actuators, 31, 155-160 (1996).
29. R. Gangopadhyay and A. De*, Chem. Mater., 12, 608-622 (2000).
30. L. Armelao, R. Bertoncello, G. Granozzi, J. Mater. Chem., 4 (3), 407-411 (1994).
31. R. H. Baughman, J. L. Bredas, Conductive Polymers, 137-146.
32. W. C. Preston, J. Phys. Chem., 52, 84 (1948).
33. R. M. Fitch, M. B. Prenosil and K. J. Sprick., J. Polym. Sci., c27, 95 (1969).
34. W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).
35. F. K. Hansen and J. Ugelstad, J. Polym. Sci., Polym. Chem. Ed., 16, 1953 (1978).
36. J. Ugelstad, F. K. Hansen and S. Lange, Makromol. Chem., 175, 507 (1974).
37. F. A. Bovey, I. M. Kolthoff, A. I. Medalia and E. J. Meehan, Emulsion polymerization, Interscience, NEW YORK (1995).
38. R. H. Ottewill and J. N. Shaw, Kolloid-Z. Z. Polym., 215, 161 (1966).
39. W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).
40. J. Ugelstad and F. K. Hansen, Rubber Chem. Technol., 49, 536 (1976).
41. H. J. Van den Hull and J. W. Vanderhoff, Brit. Polym. J., 2, 121 (1970).
42. T. Matsumoto and A. Ochi, Kobunshi Kagaku, 22, 481 (1965).
43. M. Arai, K. Arai and S. Saito, J. Polym. Sci., Polym. Chem. Ed., 17, 3655 (1979).
44. M. Arai, K. Arai and S. Saito, ibid., 18, 2811 (1980).
45. D. Munro, A. R. Goodall, M. C. Wilkinson, K. Randle and J. Hearn, J. Colloid Surface Sci., 1, 1 (1979).
46. G. W. Ceska, J. Appl. Polym. Sci., 18, 427 (1974).
47. Z. Shen., Synth. Rubber Ind., 4, 248 (1987).
48. M. S. Juang and I. M. Krieger, J. Polym. Sci., Polym. Chem. Ed., 14, 2089 (1976).
49. A. Kotera, K. Furusawa and Y. Takeda, Kolloid-Z. Z. Polym., 269, 677 (1970).
50. A. Kotera, K. Furusawa and Y. Takeda, Kolloid-Z. Z. Polym., 240, 837 (1970).
51. J. W. Goodwin, J. Hearn, C. C. Ho and R. H. Ottewill, Brit. Polym. J., 5, 347 (1973).
52. Y. Chung-Li, J. W. Goodwin and R. H. Ottewill, Progr. Colloid Polym. Sci., 60, 163 (1976).
53. V. Smigol, F. Svec, K. Hosoya, Q. Wang and J. M. Frechet, Angew. Makromol. Chem., 195, 151 (1992).
54. Y. Ohtsuka, H. Kawaguchi and Y. Sugi, J. Apply. Polym. Sci., 26, 1637 (1981).
55. S. A. Chen and H. S. Chang, J. Polym. Sci., Polym. Chem. Ed., 28, 2547 (1990).
56. E. Zurkova, K. Bouchal, D. Zdenkova, Z. Pelzbauer, F. Svec and J. Kalal, J. Polym. Sci., Polym. Chem. Ed., 21, 2949 (1983).
57. R. M. Fitch and C. H. Tsai, Polym. Colloids, Plenum press, New York (1971).
58. R. M. Fitch, Br. Polym. J., 5, 467 (1973).
59. M. R. Grancio and D. J. Wilkinson, A. R. Goodall and M. Chainey, J. Polym. Sci., Polym. Chem. Ed., 23, 1869 (1985).
60. P. Keusch and P. J. Williams, J. Polym. Sci.,Polym. Chem. Ed., 11, 143 (1973).
61. A. R. Goodall, M. C. Wilkinson and J. Hearn, J. Polym. Sci., Polym. Chem. Ed., 15, 2193 (1977).
62. J. Hearn, M. C. Wilkinson, A. R. Goodall and M. Chainey, J. Polym. Sci., Polym. Chem. Ed., 23, 1869 (1985).
63. M. Chainey, J. Hearn and M. C. Wilkinson, J. Polym. Sci., Polym. Chem. Ed., 25, 505 (1987).
64. H. S. Chang and S. A. Chen, J. Polym. Sci., Polym. Chem. Ed., 26, 1207 (1988).
65. S. A. Chen and S. T. Lee, Macromolecules, 24, 3340 (1991).
66. Q. Wang, S. Fu and T. Yu, Prog. Polym. Sci., 19, 703 (1994).
67. R. M. Fitch and R. C. Watson, J. Colloid Interface Sci., 68, 14 (1979).
68. V.Vivier, C.Cachet-Vivier, C.S. Cha, Electrochemistry communications, 2, 180 (2000).
69. Yassar A, Roncali J, Garnier F. Polym Commun, 28, 103 (1987).
70. Liu CF, Maruyama T, Yamamoto T. Polym J, 25, 363 (1993).
71. Ting Lei, Koichi Aoki, J. Electronal. Chem, 482, 149 (2000).
72. B.J. Kim, S.G. Oh, polymer, 43, 111 (2002).
73. T. Osaka, K. Naoi and T. Hirabayashi, J. Electrochem. Soc., 134, 2645 (1990).
74. B. P. Jelle, G. Hagen, S. Sunde and R. Odegard, Synth. Met., 54, 315 (1993).
75. 陳壽安, 化工, 38, 98 (1992).
76. 林怡君, 國立台灣大學化工研究所碩士論文 (2001).
77. 廖建勛, 有機半導體材料與元件 (2000).
78. 陳壽安, 電子月刊, 第七卷, 第四期 (2000).
79. 陳偉明, 國立中央大學化工研究所碩士論文 (1995).
80. Christelle Barthet, Steven P. Armes, Mohamed M. Chehimi, Carole Bilem, and Maria Omastova, Langmuir, 14, 5032 (1998).
指導教授 楊思明(Sze-Ming Yang) 審核日期 2002-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明