博碩士論文 89321022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.14.253.170
姓名 呂承璋(Cheng-Zhang Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能
(Synthesis and characterization of two classes of lithium-intercalating cathode materials: LixNi1-yCoyO2 andLiM0.5-yM'yMn1.5O4)
相關論文
★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究★ 鋰離子電池陽極碳材料開發
★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究★ 鋰離子電池混合金屬氧化物材料之電化學特性分析
★ 由天然農作物製備鋰離子電池負極碳材料★ LiCoO2陰極材料重要製程評估與改質研究
★ LiNi0.8Co0.2O2陰極材料製程與改質研究★ 由花生殼製備鋰離子電池高電容量負極碳材料
★ 鋰離子電池層狀結構陰極材料合成與改質研究★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究
★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究
★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文前半部探討以溶膠凝膠法合成LixNi1-yCoyO2陰極材料之合成條件,首先以熱重量分析儀分析以酒石酸為螯合劑,所合成之先導物,接著利用XRD鑑定各製程所得材料之結構變化,進而測試各材料之電池性能,以求出最佳製程條件,其合成變因有煆燒溫度、時間、鋰計量及摻雜鍶離子等。後半部則為以高溫固態法合成一系列高電壓陰極材料LiMyNi0.5-yMn1.5O4(M = Fe, Mg, Al, Cu;y = 0.1~0.4)及LiMyCr0.5-yMn1.5O4(M = Fe, Al;y = 0.1~0.4)等,利用XRD探討各種不同金屬摻雜所得材料之結構變化,並以循環伏安法(Cyclic Voltammetry)測試材料氧化還原行為。

1. 以溶膠凝膠法合成LixNi0.8Co0.2O2陰極材料

首先以硝酸鋰、硝酸鎳及硝酸鈷等三種為起始物,以酒石酸為螯合劑,無水酒精為溶劑,將所得的先導物以600、700及800℃三種不同煆燒溫度,分別於不同煆燒時間6、12及24小時,在氧氣氣氛下進行煆燒。由XRD分析圖譜中可發現在煆燒溫度700℃以上之條件可合成出純相產物。本實驗最佳製程條件為以800 ℃為煆燒溫度,12小時為煆燒時間。其合成材料於充放電截止電壓分別為4.2及3.0 V,充放電速率為0.1 C測試時,第一次循環放電電容量為174 mAh/g,且經十次充放電測試後,其放電電容量為165 mAh/g,電荷維持率為95%。

為避免高溫熱處理下造成鋰的揮發及鋰鎳位置互換而造成電容量損失,因此擬藉助加入過量鋰金屬,以改善此一現象。吾人針對x =1.00、1.05、1.10及1.15進行研究。結果發現計量數仍以鋰正計量x=1.00所合成之Li1.00Ni0.8Co0.2O2陰極材料電池性能最佳,第一次可逆電容量為174 mAh/g,經十次充放電測試後,放電電容量為165 mAh/g,電荷維持率為95%。

為了增進材料本身的導電度,擬藉由摻雜的方式,加入微量之金屬離子,改善鎳含量較多的材料,結構穩定性較差之缺點。當鍶對鋰之莫爾數比為10-6時有最佳之電池性能,其第一次及第十次放電電容量分別為182及174 mAh/g,電荷維持率為96 %。

2. 以高溫固態法合成高電壓LiMyNi0.5-yMn1.5O4陰極材料(M = Fe, Mg, Al, Cu;y = 0.1~0.4)

以固態法合成LiMyNi0.5-yMn1.5O4陰極材料,擬藉由摻雜各種不同金屬鐵、鎂、鋁及銅及改變不同金屬計量莫爾比例y = 0.1、0.2、0.3及0.4等,探討材料的電化學行為,瞭解鋰錳氧材料摻雜不同金屬元素電池性能的差異。由XRD可發現各項摻雜系統之結構均為立方體結構,其產物繞射峰面不隨鎳離子的改變而改變,是一良好的固溶相。圖中可發現在(400)位置的繞射峰位置,隨著鎳離子摻雜量的增加,而往高角度偏移,顯示晶格常數a值隨鎳摻雜的增加而降低。

由CV測試結果得知當摻雜金屬離子莫爾數比例由0.1逐漸增加至0.4時,可發現在4.0 V 區域之氧化還原峰之強度有增強的趨勢,而且高於4.5 V以上之氧化還原峰有逐漸向更高電壓區偏移的行為產生。這意指氧化還原電位會隨鎳與摻雜金屬的莫爾比例不同而有所改變,且摻雜金屬之莫爾數比愈高,電位就更朝向高電壓區域發展。

在電池性能方面,四種金屬摻雜莫爾數比仍以0.1為最佳摻雜計量,初始可逆電容量皆有100 mAh/g以上,且隨著摻雜計量數的增加,電容量呈現遞減的趨勢。在改變不同金屬元素為摻雜系統時,發現以鐵離子之摻雜且莫爾計量比例為0.1時,電池性能最佳,第1次可逆電容量為117 mAh/g,第10次循環可逆電容量為113 mAh/g,電荷維持率為97 %,且經60次循環後,放電電容量為90 mAh/g,電荷維持率為78 %。

3. 以高溫固態法合成高電壓LiMyCr0.5-yMn1.5O4陰極材料(M = Fe, Al,;y = 0.1~0.4)

針對上述第2部分所得最佳之摻雜金屬元素鐵,以及次佳之金屬元素鋁,吾人以鉻取代鎳離子,於相同製程條件下,改變不同金屬計量莫爾比例y=0.1、0.2、0.3及0.4等,合成一系列LiMyCr0.5-yMn1.5O4陰極材料(M = Fe, Al)。由XRD結構分析圖中可發現各個摻雜系統其在(400)位置的繞射峰位置,隨著鉻離子摻雜量的增加,而往高角度偏移,顯示晶格常數a值隨鉻摻雜的增加而降低。

由CV圖中可發現氧化還原反應發生的位置分成兩個區域,分別為4.0及5.0 V兩區域。在圖形中可發現其接近5.0 V附近的氧化峰電位極高,約5.0 V左右,相較於前述第2點以鎳的摻雜約4.8 V左右還要高,顯示鉻的摻雜系統其工作電壓較鎳的摻雜系統為高。

電池性能方面,鉻鐵與鉻鋁兩摻雜系統均在金屬摻雜計量莫爾比例y = 0.1時電池性能最佳,以鉻鐵系統為例,其初始放電電容量為117 mAh/g,第10次放電電容量為109 mAh/g。電荷維持率為93 %,且經40次循環後,放電電容量為88 mAh/g,電荷維持率為75 %。而鉻鋁系統其第1次放電電容量為112 mAh/g,第10次放電電容量為107 mAh/g。電荷維持率為96 %,且經40次循環後,放電電容量為70 mAh/g,電荷維持率為73 %,鉻鐵摻雜系統之電池性能優於鉻鋁之摻雜系統。
摘要(英) This dissertation work deals with the synthesis and characterization of two classes of lithium-intercalating cathode materials: layered LixNi1-yCoyO2 prepared by a sol-gel process and LiM’’yM’0.5-yMn1.5O4 (M’’= Fe, Mg, Al, Cu ; M’= Ni, Cr ; y = 0.0~0.4) spinels prepared via a solid-state route. The physico-chemical characterization of LixNi1-yCoyO2 was carried out by TGA/DTA, XRD and charge-discharge studies. The synthesis parameters – calcination temperature and duration, lithium stoichiometry, dopant (Sr2+) levels, etc. – were optimized in order to obtain products with the best electrochemical activity. The effect of simultaneously doping the spinels on the structural characteristics was examined by XRD and the effect on electrochemical features was analyzed by cyclic voltammetry.

1. Sol-gel synthesis of LiNi0.8Co0.2O2 cathode material

Tartaric acid was used as the chelating agent for the sol-gel synthesis of LixNi1-yCoyO2. The optimized heat treatment protocol for the synthesis was a calcination temperature of 800℃ for 12 h. LiNi0.8Co0.2O2 prepared under this heat treatment protocol gave a first-cycle discharge capacity of 174 mAh/g, which faded to 165 mAh/g in the tenth cycle, registering a charge retention of 95 % (0.1 C; 3.0~4.2 V).

To compensate for lithium that may evaporate during heat treatment and to pre-empt the occupation of Ni in the Li sites, lithium-rich phases, LixNi0.8Co0.2O2, (where x= 1.05~1.15) were synthesized. However, promising results were obtained only with the perfectly stoichiometric composition (x = 1.00).

Sr2+ as a dopant was introduced in the LixNi0.8Co0.2O2 structures in order to enhance the electrical conductivity of the cathode material. Sr2+/Li+ ratios of 10-4 to 10-8 were studied. The most desirable electrochemical features were obtained at a Sr2+/Li+ ratio of 10-6, when the product gave a first-cycle discharge capacity of 182 mAh/g. The capacity and charge retention in the tenth cycle were 174 mAh/g and 96%, respectively.

2. Solid-state synthesis of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M=Fe, Mg, Al, Cu ; y=0.0~0.4)

Solid-state synthesized LiMyNi0.5-yMn1.5O4 (M = Fe, Mg, Al, Cu ; y = 0.0~0.4) were studied as high-voltage cathode materials. Powder x-ray diffraction studies showed that all the substituents displayed a propensity for the 8a tetrahedral site at high concentrations. Cyclic voltammetric studies showed electrochemical activity around 4.0 V as well as above 4.4 V. While the 4-volt activity was related solely to the Mn4+/Mn3+ couple, the 5-volt activity was due to the redox reactions of Ni and the other transition metal ions. The co-substituents reduced the 5-volt capacity and shifted the redox potentials in the 5-volt region to higher values. At high concentrations, the co-substituents tend to occupy the 8a sites, leading to a blockage of lithium transport during the charge-discharge processes. LiFe0.1Ni0.4Mn1.5O4 registered the best performance with a first-cycle capacity of 117 mAh/g and capacity retention of 78% over 60 cycles (0.1C; 3.3~4.95V). Electrochemical impedance studies showed a decrease in the charge-transfer resistance at high deintercalation levels.

3. Solid-state synthesis of high-voltage cathode materials, LiMyCr0.5-yMn1.5O4 (M = Fe, Al ; y = 0.0~0.4)

As with the Ni-substituted systems discussed above, an increase in the amount of Fe or Al increased the propensity of these co-dopants to occupy the 8a lithium sites. Electrochemical activity was noted in the 4-volt and 5-volt regions. Fe as a co-dopant increased the currents associated with the high-voltage peaks, while Al enhanced the high-voltage capability of the spinel. Irrespective of whether the co-dopant was a transition metal or a non-transition metal, it altered the electrochemical characteristics of both the Mn4+/Mn3+ and the Cr4+/Cr3+ couples, the effect being more pronounced in the 5-volt region. Although increased amounts of Fe or Al rendered the spinels high-voltage active, both the deliverable capacity and the capacity retention obtained with the Al-doped materials were less than those with the Fe-doped materials. At a 0.1 C rate between 3.3 and 5.1 V, the Fe-doped spinel (y = 0.1) gave a first-cycle capacity of 117 mAh/g, while that co-doped with Al gave 112 mAh/g. The corresponding values in the 40th cycle were 88 and 82 mAh/g, respectively.
關鍵字(中) ★ 鋰離子電池
★ 溶膠凝膠
★ 混合金屬氧化物鋰錳氧
★ 鋰鎳鈷氧
★ 循環伏安法
關鍵字(英) ★ Sol-gel
★ LiMyNi0.5-yMn1.5O4
★ Cyclic Voltammetry
★ Lithium ion batteries
★ LixNi1-yCoyO2
論文目次 目錄
摘要 Ⅰ
誌謝 Ⅵ
目錄 Ⅶ
圖目錄 ⅩⅠ
表目錄 ⅩⅤ
第一章 緒論 1
Ⅰ. 鋰離子電池發展背景簡介 1
Ⅱ. 研究大綱及目的 3
第二章 文獻回顧 7
Ⅰ. 材料合成法簡介與鋰鎳鈷氧化物文獻回顧 7
A. 高溫固態法 7
B. 共沈澱法 11
C. 溶凝膠法 16
1. 使用聚合物之酸為螯合劑 19
2. 以單分子酸為螯合劑 22
3. 不加螯合劑 26
D. 水熱法 27
E. 鋰鎳鈷氧化物國內外發展現況 27
Ⅱ. 鋰錳氧化物高電壓陰極材料文獻回顧 29
A. 高電壓陰極材料-- LiNiVO4 29
B. 鋰錳氧化物高溫性能簡介 32
1. 充放電曲線變化情形 32
2. 電解質液中的溶解現象 34
C. 鋰錳氧化物摻雜其他金屬改質研究 36
1. 鋰錳氧化物摻雜金屬元素之研究近況 36
2. 鋰錳氧化物摻雜金屬元素後之結構變化 36
3. 鋰錳氧化物摻雜各種金屬元素後之電化學特性 39
第三章 實驗方法 42
Ⅰ. 實驗儀器 42
Ⅱ. 實驗藥品與器材 43
Ⅲ. 實驗步驟 44
A. 溶膠凝膠法合成LixNi1-yCoyO2陰極材料 44
B. 以高溫固態法合成LiM0.5-yNiyMn1.5O4陰極材料(M = Fe, Mg,
Al, Cu;y = 0.1~0.4) 49
C. 以高溫固態法合成LiM0.5-yCryMn1.5O4陰極材料
(M = Fe, Al;y = 0.1~0.4) 49
D. 材料鑑定分析 50
1. 熱重量分析(TGA) 50
2. X光繞射(XRD) 50
3. 感應耦合電漿質譜分析(ICP-MS) 50
E. 材料電化學特性分析 51
1. 電池性能測試 51
a. 陰極極片製作 51
b. 硬幣型電池組裝 51
c. 電池性能測試方法步驟 51
2. 循環伏安分析(Cyclic Voltammetry) 53
第四章 結果與討論 55
Ⅰ. 以溶凝膠法製備LixNi1-yCoyO2陰極材料鑑定分析與電池性能 55
A. 鑑定分析 55
B. 電池性能測試 65
Ⅱ. 以高溫固態法製備LiMyNi0.5-yMn1.5O4陰極材料
(M = Fe, Mg, Al, Cu;y = 0.1~0.4)鑑定分析與電池性能 75
A. XRD鑑定分析 75
B. 電化學特性分析 78
1. LiNi0.5-yMyMn1.5O4系統摻雜不同金屬M,
M=Fe、Mg、Al、Cu 78
a. 循環伏安分析(Cyclic Voltammetry) 78
b. 電池性能測試 81
2. LiNi0.5-yMyMn1.5O4系統,改變不同金屬M之計量莫爾比
y = 0.1、0.2、0.3、0.4 89
a. 循環伏安分析(Cyclic Voltammetry) 89
b. 電池性能測試 91
Ⅲ. 以高溫固態法製備LiMyCr0.5-yMn1.5O4陰極材料
(M = Fe, Al;y = 0.1~0.4)鑑定分析與電池性能 99
A. XRD鑑定分析 99
B. 電化學特性分析--- 循環伏安分析(Cyclic Voltammetry) 103
C. 電池性能測試 105
第五章 結論 109
Ⅰ. 以溶凝膠法製備LixNi1-yCoyO2陰極材料 109
Ⅱ. 以高溫固態法製備LiMyNi0.5-yMn1.5O4陰極材料(M = Fe, Mg, Al, Cu;
y = 0.1~0.4) 110
Ⅲ. 以高溫固態法製備LiMyCr0.5-yMn1.5O4陰極材料(M = Fe, Al;
y = 0.1~0.4) 111
第六章 參考文獻 112
參考文獻 01. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Grover, “Synthesis and Structural Characterization of the Normal Spinel Li[Ni2O4]”, Mat. Res. Bull., 20, 1137 (1985).
02. A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi and M. Leonini,“Solid-State Reaction Study on the System Ni-Li2CO3”, Solid State Ionics, 32/33, 398 (1989).
03. J. Morales, C. Peraz-Vicente and J. L. Tirado,“Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2”, Mat. Res. Bull., 25, 623 (1990).
04. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin,“A Rechargeable Li/LixCoO2 Cell”, J. Power Sources, 21, 25 (1987).
05. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough,“LixCoO2 (0 07. A. Mendiboure, C. Delmas and P. Hagernmuller,“New Layered Structure Obtained By Electrochemical Deintercalation of the Metastable LiCoO2 (O2) Variety”, Mat. Res. Bull., 19, 1383 (1984).
08. T. Nagaura and K. Tazawa,“Lithium Ion Rechargeable Battery”, Progess Batteries & Solar Cells, 9, 209 (1990).
09. J. M. Tarascon and D. Guyomard,“The Li1+xMn2O4/C Rocking-Chair System: A Review”, Electrochimica Acta, 38, 1221 (1993).
10. J. M. Tarascon and D. Guyomard,“Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathodes (0≦x≦1) and Carbon Anodes”, J. Electrochem. Soc., 138, 2864 (1991).
11. J. M. Tarascon, D. Guyomard and G. L. Baker,“An Update of the Li Metal-Free Rechargeable Battery Based on Li1+XMn2O4 Cathodes and Carbon Anodes”, J. Power Sources, 43-44, 689 (1993).
12. R. J. Gummow and M. M. Thackeray,“Lithium-Cobalt-Nickel-Oxide Cathode Materials Prepared at 400 Degree C for Rechargeable Lithium Batteries”, Solid. State Ionics, 53, 681 (1992).
13. R. J. Gummow and M. M. Thackeray,“Electrochemical Science and Technology Characterization of LT – LixCo1-yNiyO2 Electrodes for Rechargeable Lithium Cells, “J. Electrochem. Soc., 140, 3365 (1993).
14. E. Zhecheva and R. Stoyanova,“Stabilization of the Layered Crystal Structure of LiNiO2 by Co – Substitution”, Solid State Ionics, 66, 143 (1993).
15. C. Delmas, I. Saadoune and A. Rougier,“The Cycling Properties of the LixNi1-yCoyO2 Electrode”, J. Power Sources, 43, 595 (1993).
16. J. Pierre and P. Ramos,“Electrochemical Properties of Cathodic Materials Synthesized by Low-Temperature Techniques”, J. Power Sources, 54, 120 (1995).
17. C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.
18. C. Delmas and I. Saadoune,“Electrochemical and Physical Properties of the LixNi1-yCoyO2 Phases”, Solid State Ionics, 53, 370 (1992).
19. A. Ueda and T. Ohzuku,“Solid-State Redox Reactions of LiNi1/2Co1/2O2 (R3m) for 4 Volt Secondary Lithium Cells”, J. Electrochem. Soc., 141, 2010 (1994).
20. R. Alcantara, J. Morales and J. L. Tirado,“Structure and Electrochemical Properties of Li1-x(NiyCo1-y)1+xO2--Effect of Chemical Delithiation at 0℃”, J. Electrochem. Soc., 142, 3997 (1995).
21. R. Alcantara, P. Lavela and J. L. Tirado,“Charges in Structure and Cathode Performance with Composition Temperature of Lithium Cobalt Nickel Oxide”, J. Electrochem. Soc., 145, 730 (1998).
22. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann and C. Delmas, “Effect of Cobalt Substitution on Cationic Distribution in LiNi1-yCoyO2 Electrode Materials”, Solid State Ionics, 90, 83 (1996).
23. I. Saadoune and C. Delmas,“LiNi1-yCoyO2 Positive Electrode Materials : Relationships between the Structure, Physical Properties and Electrochemical Behaviour”, J. Mater. Chem., 6(2), 193 (1996).
24. W. Li and J. C. Currie,“Morphology Effects on the Electrochemical Performance of LiNi1-xCoxO2”, J. Electrochem. Soc., 144, 2773 (1997).
25. U. Heider, R. Oesten, L. Heider, M. Niemann, A. Amann and N. Lotz, “LiNi1-xCoxO2 Electrodes for Secondary Lithium Batteries with Improved Properties”, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
26. D. Caruant, N. Baffier, B. Garcia and J. P. P. Ramos, “Synthesis by A Soft Chemistry Route and Characterization of LiNixCo1-xO2 (0≦x≦1) Cathode Materials”, Solid State Ionics , 91, 45 (1996).
27. Y. M. Choi, S. I. Pyun and S. I. Moon, “Effects of Cation Mixing on the Electrochemical Lithium Intercalation Reaction into Porous Li1-δNi1-yCoyO2 Electrodes”, Solid State Ionics, 89, 43, (1996).
28. Y. K. Sun, I. H. Oh and K. Y. Kim,“Synthesis of LiCo0.5Ni0.5O2 Powders by a Sol-Gel Method”, J. Mater. Chem., 7, 1481 (1997).
29. C. Julien, L. E. Farh, S. Gangan and M. Massot,“Studies of LiNi0.6Co0.4O2 Cathode Material Prepared by the Citric Acid-Assisted Sol-Gel Method for Lithium Batteries”, Journal of Sol- Gel Science and Technology, 15, 63 (1999).
30. C. C. Chang and P. N. Kumta,“Particulate Sol-Gel Synthesis and Electrochemical Characterization of LiMO2 ( M = Ni, Ni0.75Co0.25) Powders”, J. Power Sources, 75, 44 (1998).
31. C. Julien, S. S. Michael and S. Ziolkiewicz,“Structural and Electrochemical Properties of LiNi0.3Co0.7O2 Synthesized by Different Low-Temperature Techniques”, J. Inorganic Materials, 1, 29 (1999).
32. J. Cho, H. S. Jung, Y. C. Park, G. B. Kim and H. S. Lim,“Electrochemical Properties and Thermal Stability of LiaNi1-xCoxO2 Cathode Materials”, J. Electrochem. Soc., 147(1), 15 (2000).
33. R. K. B. Gover, M. Yonemura, A. Hirano, R. Kanno, Y. Kawamoto and C. Murphy,“The Control of Nonstoichiometry in Lithium Nickel-Cobalt Oxides”, J. Power Sources, 81, 535 (1999).
34. J. Cho and B. Park,“Preparation and Electrochemical/Thermal Properties of LiNi0.74Co0.26O2 Cathode Materials”, J. Power Sources, 92, 35 (2001).
35. G. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu and S. X. Dou,“Structure, Physical and Electrochemical Characterization of LiNixCo1-xO2 Solid Solutions”, J. Power Sources, 85, 279 (2000).
36. C. Julien, C. Letranchant, S. Rangan, M. Lemal, S. Ziolkiewicz, S. Castro-Garcia, L. E. Farh and M. Benkaddour,“Layered LiNi0.5Co0.5O2 Cathode Materials Grown by Soft-Chemistry via Various Solution Methods”, Materials Science and Engineering , B76, 145 (2000).
37. A. C. Pierre,“Introduction to Sol-Gel Processing”, Kluwer Acadmic Publishers, 4 (1998)
38. C. K. Jorgensen, in Atoms and Molecules, Academic Press, London, 1962, p. 80.
39. L. V. Azraroff,“The Powder Method in X-ray Crystallography”, McGraw Hill, 256 (1993).
40. G. T. K. Fey, V. Subramanian and C. Z. Lu,“Improved Electrochemical Properties of Sr2+ Doped LiNi0.8Co0.2O2 Synthesized Via a Sol-gel Route Using Tartaric Acid as a Chelating Agent”, Ionics, 7, 210 (2001).
41. G. T. K. Fey, V. Subramanian and J. G. Chen,“Electrochemical performance of Sr2+ Doped LiNi0.8Co0.2O2 as a Cathode Material for Lithium Batteries Synthesized via a Wet Chemistry Route Using Oxalic Acid”, Materials Letters, 52, 197 (2002).
42. G. T. K. Fey, V. Subramanian and J. G. Chen,“Synthesis of Non-stoichiometric Lithium Nickel Cobalt Oxides and Their Sructural and Electrochemical Characterization”, Electrochemistry Communications, 3, 234 (2001).
43. G. T. K. Fey and V. Subramanian,“Preparation and Characterization of LiNi0.7Co0.2Ti0.05M0.05O2 (M= Mg, Al and Zn) Systems as Cathode Materials for Lithium Batteries”, Solid State Ionics (Submitted).
44. G. T. K. Fey, V. Subramanian and C. Z. Lu,“Tartaric Acid Assisted Sol-Gel Synthesis of LiNi0.8Co0.2O2 and its Electrochemical Properties as a Cathode Material for Lithium Batteries”, Solid State Ionics (Submitted).
45. G. T. K. Fey, V. Subramanian, J. G. Chen and C. L. Chen, “LiNi0.8Co0.2O2 Cathode Materials Synthesized by the Maleic Acid Assisted Sol-Gel Method for Lithium Batteries”, J. Power Sources, 103, 265 (2002).
46. G. T. K. Fey, R. F. Shiu, V. Subramanian and C.L. Chen,“The Effect of Varying the Acid to Metal Ion Ratio ‘R’ on the Structural, Thermal, and Electrochemical Properties of Sol-Gel Derived Lithium Nickel Cobalt Oxides”, Solid State Ionics (Submitted).
47. L. Hernan, J. Morales, L. Sanchez, and J. Santos,“Use of Li–M–Mn–O [M=Co, Cr, Ti] Spinels Prepared by a Sol-Gel Method as Cathodes in High-Voltage Lithium Batteries”, Solid State Ionics, 118, 179 (1999).
48. G. T. K. Fey, W. Li, and J. R. Dahn,“LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells”, J. Electrochem. Soc., 141, 2279 (1994).
49. G. T. K. Fey, and W. B. Perng,“A New Preparation Method for A Novel High Voltage Cathode Material : LiNiVO4”, Materials Chemistry & Physics, 47, 279 (1997).
50. H. Kawai, M. Nagata, H. Tukamoto, and A. R. West,“High Voltage Lithium Cathode Materials”, J. Power Sources, 81, 67 (1999).
51. T. Ohzuku, S. Takeda, and M. Iwanaga,“Solid State Redox Reactions for Li[Me1/2Mn1/2]O4 (Me:3d transition metal) Having Spinel Framework Structures: a Series of 5 V Materials for Advanced Lithium Batteries”, J. Power Sources, 81, 90 (1999).
52. Y. Xia, Y. Zhou and M. Yoshio,“Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells”, J. Electrochem. Soc., 144, 2593 (1997).
53. J. M. Tarascon and D. Guyomard,“The Li1+xMn2O4/C Rocking-Chair System: A Review”, Electrochemica Acta, 38, 1221 (1993).
54. J. M. Tarascon and D. Guymard,“Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathodes (0≦x≦1) and Carbon Anodes”, J. Electrochem. Soc, 138, 2864 (1991).
55. Y. Gao and J. R. Dahn, ""Correlation between the Growth of the 3.3 V Discharge Plateau and Capacity Fading in Li1+xMn2-xO4 Materials”, Solid State Ionics, 84, 33 (1996).
56. G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse and J. M. Tarascon, “Surface Treatments of Li1+xMn2-xO4 Spinels for Improved Elevated Temperature Performance”, J. Power Sources, 104, 13 (1997).
57. M. Wakihara, Li Guohua, H. Ikuta and T. Uchida,“Chemical Diffusion Coefficients of Lithium in LiMyMn2-yO4 (M = Co and Cr)”, Solid State Ionics, 86, 907 (1996).
58. K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita,“A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries”, J. Electrochem. Soc., 143, 1067 (1996).
59. G. T. K. Fey, W. Li and J. R. Dahn, “LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells”, J. Electrochem. Soc., 141, 2279 (1994).
60. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux, “Positive Electrode Materials with High Operating Voltage for Lithium Batteries: LiCryMn2-yO4 (0≦y≦1)”, Solid State Ionics, 81, 167 (1995).
61. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, “Synthesis and Electrochemistry of LiNixMn2-xO4”, J. Electrochem. Soc., 144, 205 (1997).
62. F. L. Cras, D. Bloch, M. Anne and P. Strobel,“Lithium Intercalation in Li-Mg-Mn-O and Li-Al-Mn-O Spinels”, Solid State Ionics, 89, 203 (1996).
63. Y. Ein-Eli and W. F. Howard,“5 V Cathode Materials”, J. Electrochem. Soc., 144, L205 (1997).
64. Y. Ein- Eli, W. F. Howard, Jr., S. H. Lu,“LiMn2-xCuxO4 Spinels (0.1≦x≦0.5): A New Class of 5V Cathode Materials for Li Batteries”, J. Electrochem. Soc., 145, 1238 (1998).
65. L. Gouhua, H. Ikuta, T. Uchida and M. Wakihara,“The Spinel Phase LiMyMn2-yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 143, 178, (1996).
66. K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita,“A New Three-Volt Spinel Li1+xMn1.5Ni0.5O4 for Secondary Lithium Batteries”, J. Electrochem. Soc., 143, 1067 (1996).
67. J. R. Dahn, U. V. Sacken and C. A. Michal,“Structure and Electrochemistry of Li1±yNiO2 and a New Li2NiO2 Phase with the Ni(OH)2 Structure”, Solid State Ionics, 44, 87 (1990).
68. X. Q. Yang, X. Sun, and J. McBreen,“New Findings on the Phase Transitions in Li1-xNiO2: In Situ Synchrotron X-Ray Diffraction Studies”, Electrochem. Communications, 1, 227 (1999).
69. Y. Nishida, K. Nakane and T. Satoh, ""Synthesis and Properties of Gallium -Doped LiNiO2 As the Cathode Material for Lithium Secondary Batteries"", J. Power Sources, 68, 561 (1997).
70. Y. Gao, M. V. Yakovleva and W. B. Edner, ""Novel LiNi1-xTix/2Mgx/2O2 Compounds As Cathode Materials for Safer Lithium-Ion Batteries"", Electrochemical and Solid-State Letters, 1, 117 (1998).
71. A. N. Petrov, O. F. Kononchuk, A.V. Andreev, V. A. Cherepanov and P. Kofstad,“Crystal Structure, Electrical and Magnetic Properties of La1-xSrxCoO3-y”, Solid State Ionics, 80, 189 (1995).
72. T. Ohzuku, K. Ariyoshi, S. Takeda and Y. Sakai,“Synthesis and Characterization of 5 V Insertion Material of Li[FeyMn2−y]O4 for Lithium-Ion Batteries”, Electrochimica Acta, 46 (2001) 2327.
73. G. Ceder, Y. M. Chiang, D. R. Sadowy, M. K. Aydinol, Y. I. Jang, and B. Huang,“Identification of CathodeMaterials for Lithium Batteries Guided by First-Principles Calcaulations ”, Nature, 392, 694 (1998).
74. Y. S. Horn and R. L. Middaugh,“Redox Reactions of Cobalt, Aluminum and Titanium Substituted Lithium Manganese Spinel Compounds in Lithium Cells”, Solid State Ionics, 139, 13 (2001).
75. C. Sigala, A. Le Gal La Salle, Y. Piffard and D. Guyomard, “Influence of the Cr Content on the Li Deinsertion Behavior of the LiCryMn2-yO4 (0≦y≦1) Compounds,Ⅰ. Separation of Bulk and Superficial Processes at High Voltage”, J. Electrochem. Soc., 148, A812 (2001).
76. C. Sigala, A. Le Gal La Salle, Y. Piffard and D. Guyomard, “Influence of the Cr Content on the Electrochemical Behavior of the LiCryMn2-yO4 (0≦y≦1) Compounds, Ⅱ. Cyclovoltammetric Study of Bulk and Superficial Processes”, J. Electrochem. Soc., 148, A819 (2001).
77. C. Sigala, A. Le Gal La Salle, Y. Piffard and D. Guyomard, “Influence of the Cr Content on the Li Deinsertion Behavior of the LiCryMn2-yO4 (0≦y≦1) Compounds, Ⅲ. Galvanostatic Study of Bulk and Superficial Processes”, J. Electrochem. Soc., 148, A826 (2001).
78. Y. E. Eli, J.T. Vaughey, M.M. Thackeray, S. Mukerjee, X.Q. Yang and J. McBreen,“LiNixCu0.5-xMn1.5O4 Spinel Electrodes, Superior High-Potential Cathode Materials for Li Batteries”, J. Electrochem. Soc., 146, 908. (1999).
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2002-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明