博碩士論文 89321027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:100.24.115.253
姓名 陳恩祈(En-Chi Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在Perovskite氧化物上進行CO-NO反應之研究
(The study of the CO-NO reaction over Perovskite Oxides)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 聚苯胺與聚苯乙烯殼核複合材料之研究★ 導電高分子與聚胺基甲酸酯複合材料之研究
★ 在孔道均一的模板內合成聚苯胺奈米管★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析
★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要使用sol-gel方法合成Perovskite觸媒,進行CO-NO反應的研究。因為Perovskite (ABO3)型氧化物,以及由Perovskite與AO鹽分層交錯構成的K2NiF4-type結構的Perovskite-related型氧化物,具有高度的熱穩定性,對機動車輛主要污染物CO、碳氫化合物具有良好氧化力,對NO的還原也有相當的活性。而且它們的組成可以經由金屬離子價數的控制,以部分取代的方式達到改質、調整樣品組成的目的,加上價格較低廉,所以有取代貴重金屬觸媒的研究價值。
本篇論文發現以微量Sr ( x = 0.05 ~ 0.2 )取代A位置元素La的La1-xSrxMO3( M = Mn、Fe、Co)及La2-xSrxCuO4,可以提升CO-NO反應活性;以微量Pd ( x = 0.025 ~ 0.1 )取代B位置元素Mn、Fe、Co與Cu,形成LaM1-xPdxO3 ( M = Mn、Fe、Co ) 及La2Cu1-xPdxO4,也有大幅提升CO-NO反應活性的效果。另外,負載1wt.%Pd的擔體觸媒系列中,Pd/LaMO3 (M = Co、Mn、Fe) 有很好的催化特性,優於Pd/Al2O3,其中Pd/LaCoO3和Pd/LaFeO3甚至比商業化觸媒Pt-Rh/CeO2-Al2O3活性還好;以Perovskite-related型氧化物La2CuO4作為擔體的Pd/La2CuO4活性也較原La2CuO4觸媒有所提升,但不及Pd/LaMO3 (M = Co、Mn、Fe)的改進效果。
氧氣程溫脫附結果顯示,隨著Sr取代Perovskite氧化物中La的量增加,在300oC到600oC之間的脫附氧氣(α´波峰)的量也有所增加。X光吸收光譜分析可以解釋A位置元素部份取代的Perovskite觸媒所產生的氧空缺對CO-NO反應活性的影響,當Sr取代La時,B位置元素的配位數減少,而且氧空缺也隨之增多。因此CO-NO反應的活性增加可以歸因於Sr取代所造成的氧空缺增加。從ESCA分析,可以有助於了解觸媒樣品表面的Pd氧化態,從實驗結果得知其氧化價數為+2 ~ +4之間。
摘要(英) In this study, Perovskite oxides synthesized by sol-gel method are used as the catalyst for the CO-NO reaction.
Perovskites ABO3 and related oxides have recently received much attention as catalysts for various reactions. The diversity of physicochemical properties and catalytic activities of perovskite and related oxides are derived from the fact that they exhibit a wide range of oxygen non-stoichiometry, and that their composition can be varied extensively in the form of AA’BB’O3 compounds, allowing control of the valence state of metal ions by an appropriate choice of subsistent. They are also lower-cost than noble metals and the high thermal stability of perovskite oxides makes them good candidates as high thermal stable catalysts in catalytic converter.
Results indicate that not only partial substitution of La by Sr in Perovskite oxides but also partial substitution of Co、Mn、Fe and Cu by Pd in Perovskite oxides can improve the activity of the CO-NO reaction. Different supported Pd catalysts in this study show good activity in the CO-NO reaction. The catalytic activity in the CO-NO reaction over 1wt.% Pd/LaCoO3 and Pd/LaFeO3 is even better than that over the commercial catalyst Pt-Rh/CeO2-Al2O3.
The results of O2-TPD show that the amounts of desorbed oxygen between 300 to 600℃(α´peak) increases with the increasing amount of Sr substitution for La in Perovskite oxides. X-ray absorption spectroscopy results show decrease of coordination numbers when Sr substitutes La. Oxygen vacancies are generated by partial substitution of La by Sr. The increase of activity for the CO-NO reaction can be attributed to the increase of oxygen vancancies upon substitution. The results of ESCA help us to understand that the palladium in the Pd-containing catalysts remains in an oxidized form.
關鍵字(中) ★ 溶膠凝膠法
★ CO-NO反應
關鍵字(英) ★ XANES
★ EXAFS
★ Perovskite oxides
★ sol-gel method
★ CO-NO reaction
★ O2-TPD
★ ESCA
論文目次 中文摘要…………………………………………………………..……IV
英文摘要…………………………………...………………………...…VI
圖目錄………………………………………...………………....……VIII
表目錄………………………………………...……………..……….…XI
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………….1
1-2 Perovskite氧化物…………………………………………………3
1-2.1 簡介…………………………………………………………3
1-2.2 製備方法……………………………………………………7
1-2.3 經部份取代A或B位置元素的A1-xA’xB1-yB’yO3及 A2-xA’xB1-yB’yO4……………………………………….....10
1-3 擔體觸媒………………………………………………………...13
1-3.1 擔體………………………………………………………..13
1-3.2 活性金屬…………………………………………………..14
1-4 CO-NO反應機構與動力學……………………………………..15
1-4.1 Perovskite氧化物………………………………………….15
1-4.2 負載貴重金屬的擔體觸媒………………………………..16
1-5 X光吸收光譜術簡介………………………………………….17
1-6 研究方向………………………………………………………...22
第二章 實驗方法………………………………………………………23
2-1 藥品與氣體…………………………………………..………….23
2-2 實驗儀器………………………………………………………...24
2-3 觸媒製備………………………………………………………...25
2-4 結構鑑定………………………………………………………...26
2-5 比表面積分析…………………………………………………...26
2-6 CO - NO反應活性測試…………………………………….…27
2-7 氧氣程溫脫附(O2-TPD) ………..……………………………..28
2-8 X光吸收光譜術測量方法………………………………….…29
2-9 X光吸收光譜術數據分析步驟……………………………….32
2-10 元素分析……………………………………………………….34
2-11 化學分析能譜儀……………………………………………….34
第三章 結果與討論…………………………………………………..35
3-1 Sr部分取代La的Perovskite氧化物系列觸媒………………..35
3-1.1 結構鑑定與比表面積……………………………………..35
3-1.2 CO-NO反應活性測試…………………………………...39
3-1.3 氧氣程溫脫附(O2-TPD)…………………………………..46
3-1.4 X光吸收光譜分析(XAS)……………………………….50
3-1.4.1 La1-xSrxCoO3 ( x = 0、0.1、0.2)…………………51
3-1.4.2 La1-xSrxMnO3 ( x = 0、0.1、0.2)………..………..56
3-1.4.3 La1-xSrxFeO3 ( x = 0、0.1)……………………….61
3-2 Pd部分取代B位置元素的Perovskite氧化物系列觸媒………64
3-2.1結構鑑定與比表面積……………………………………...64
3-2.2 CO-NO反應活性測試…...………………………………...68
3-2.3 氧氣程溫脫附(O2-TPD)…………………………………..74
3-2.4 元素分析…………………………………………………..77
3-2.5 ESCA……………………………………………………….78
3-3 Pd擔體觸媒…...…………………………………………………82
3-3.1 結構鑑定與比表面積……………………………………..82
3-3.2 CO-NO反應活性測試……...……………………………...86
3-3.3 ESCA…...…………………………………………………..88
3-4 綜合討論………………………………………………………...89
第四章 結論……………………………………………………………91
第五章 參考文獻………………………………………………………93
參考文獻 1. V. I. Pârvulescu, P. Grange, B. Delmon, Catal. Today, 46 , 233 (1998)
2. P. Marecot et al, Appl. Catal., B, 5, 57 (1994)
3. R. J. H. Voorhoeve, J. P.Remeika, P. E. Freeland, B. T. Mathias, Science, 177, 353 (1972)
4. R. J. H. Voorhoeve, Advanced Mate. Catal.; Academic Press: New York, (1977)
5. G. Thornton, B. C. Tofield, A.W. Hewat, Journal of Solid State Chemistry, 61,301 (1986)
6. T. Yokoya, O. Akaki, H. Kumigashira, Chainani, T. Takahashi, H. Katayama-Yoshida, M. Kasai, Y. Tokura, Jouranal of Electron Spectroscopy and Related Phenomena, 78, 171-174 (1996)
7. Y. Teraoka, H. Nii, S. Kagawa, K. Jansson, M. Nygren, Applied Catalysis A : General, 194-195, 35-41. (2000)
8. E. A. Lombardo, M. A. Ulla, Res. Chem. Intermed., 24, 5, 581 (1998)
9. N. Guilhaume, M. Primet, J. Catal., 165, 197 (1997)
10. W. Ding, Y. Chen, X. Fu, Appl. Catal. A, 104, 61 (1993)
11. R. Doshi, C. B. Alcock, J. Catal., 140, 557 (1993)
12. K. S. Chan, J. Ma, S. Jaenicke, G. K. Chuah and J. Y. Lee, Appl. Catal. A, 107, 201 (1994)
13. T. Hibono et al., Appl. Catal. A, 145, 297 (1996)
14. S. T. Shen, H. S. Weng, Ind. & Eng. Chem. Res, 37, 7, 2654 (1998)
15. N. Guilhaume, S. D. Peter, M. Primet, Appl. Catal. B, 10, 325 (1996)
16. K. Nomura, Appl. Catal. A, 137, 25 (1996)
17. T. R. Ling, Z. B. Chen, M. D. Lee, Appl. Catal. A, 136, 191 (1996)
18. Z. Zhao, X. Yang, Y. Wu, Appl. Catal. B, 8 , 281 (1996)
19. B. C. Knutz, P. Gordes, C. Bagger, N. Christiansen, N. J. Bjerrum, in “Proceedings of the First Nordic Symposium on Materials in High Temperature Fuel Cells, Oslo”, edited by B. Bergman (The Royal Institute of Technology, Sweden (1992)
20. P. Gordes, N. Christiansen, E. J. Jensen, J. Villadsen, J. Materials Science, 30 (1995)
21. H. Yasuda, J. Chem. Soc. Faraday Trans., 90(8), 1183 (1994)
22. S. Ponce, M. A. Peňa, J. L. G. Fierro, Appl. Catal. B, 24 , 193 (2000)
23. L. Simonot, F. Garin, G. Maire, Applied Catalysis B: Environment, 11, 181-191 (1997)
24. M. Öcal, R. Oukaci, G. Marcelin, S. K. Agarwal, Ind. Eng. Chem. Res. 33, 2930-2934. (1994)
25. T. Nitadori, T. Ichiki and M. Misono, Bull. Chem. Soc. Jpn., 61, 621 (1988)
26. J. M. D. Tascon and L. G. Tejuca, React. Kinet. Catal. Lett., 15, 185 (1980)
27. V. C. Belessi, C. N. Costa, T. V. Bakas, T. Anastasiadou, P.J. Pomonis, A. M. Efstathiou, Catalysis Today, 59, 347 (2000)
28. Y. Wu, Z. Zhao, Y. Liu, X. Yang, J. Molecular Catalysis A: Chemical 155, 89-100 (2000)
29. H. C. Yao, Y. F. Fu Yao, J. Catal., 254, 254 (1984)
30. A. Kudo, M. Steinberg, A. J. Bard, A. Canpien, M. A. Fox, T. E. Mallouk, S.C. Webber, J. M. White, J. Catal., 125, 565 (1990)
31. T. P. Kobylinski, B. W. Taylor, J. Catal., 33, 376 (1974)
32. H. Muraki, H. Sobukawa, M. Kimura, A. Isogai, SAE Paper 900610 (1999)
33. D. J. Balland R.G. Stack, SAE Paper 902110 (1999)
34. S. H. Oh, P. J. Mitchell, R. M. Siewert, J. Catal., 132, 287 (1991)
35. W. C. Hecker, R. B. Breneman, in : A. Crucq, A. Frennet (Eds.), Catalysis and Automotive Pollution Control, Studies in Surface Science and Catalysis, vol. 30, Elsevier, Amsterdam, p.257 (1986)
36. Y. Teraoka, H. Nii, S. Kagawa, K.Jansson, M. Nygren, Applied Catalysis A: General, 194-195, 35-41 (2000)
37. F. Solymosi, J. Sarkany, Appl. Surf. Sci., 287-288, 283 (1993)
38. M. F. Brown, R. D. Gonzales, J. Catal., 44, 477 (1976)
39. B. A. Morrow, L. E. Moran, J. Phys Chem., 81, 2667 (1977)
40. A. A. Davydov, A.T. Bell, J. Catal., 49, 345 (1977)
41. W. C. Hecker, A. T. Bell, J. Catal., 85, 389 (1984)
42. G. M. Alikina, A. A. Davydov, I. S. Sazonova, Kinet. Katal., 27, 875 (1986)
43. E. Guglielminotti, F. Boccuzi, J. Catal., 141, 486 (1993)
44. Y. J. Megler, A. van Aalst, J. van Delft, B. E. Nieuwenhuys, J. Catal.,161, 310 (1996)
45. Y. J. Mergler, B. E. Nieuwenhuys, J. Catal., 140, 424 (1993)
46. D. A. Lorimer, A. T. Bell, J. Catal., 140,424 (1993)
47. J. E. Penner-Haha, Coordination Chem. Rev., 190-192, 1101 (1999)
48. G. Vlaic, D. Andreatta and P. E. Colavita, Catal. Today, 41, 261 (1998)
49. G. G. Li, F. Bridges and C. H. Booth, Phys. Rev. B, 52, 9, 6332 (1995)
50. J. F. Lee, Chemistry (The Chinese Chem. Soc., Taiwan China) 53, 3, 280 (1995)
51. 張志強,國立中央大學化工所碩士論文 (2000)
52. 陳俞璁,國立中央大學化工所碩士論文 (2001)
53. 吳孝忠,國立中央大學化工所博士論文 (2001)
54. D. Ferri, La. Forni, Appl. Catal. B, 16, 119 (1998)
55. Y. Wu, T. Yu, B. S. Dou, C. X. Wang, X. F. Xie, Z. L. Yu, S. R. Fan, Z. R. Fan, L. C. Wang, J. Catal., 120, (1989) 88.
56. K. Tabata, I. Matsumoto, S. Kohiki, J. Mater. Sci., 22, (1987) 1882.
57. T. Nitadori, S. Kurihara, M. Misono, J. Catal., 98, (1986) 221.
58. P. W. Yen, T. C. Chou, Appl. Catal. A: General, 198, 23-31 (2000)
59. P. Porta, S. D. Rossi, M. Faticani, G. Minelli, I. Pettiti, L. Lsi, M. Turco, J. Solid State Chem., 146, 2, 291. (1999)
60. Y. Teraoka, T. Harada, S. Kagawa, J. Chem. Soc., Faraday Trans., 94(13), 1887 (1998)
61. G. Subías, J. García, J. Blasco, M. G. Proietti and M. C. Sánchez, J. Magnetism and Magnetic Materials, 196-197, 534. (1999)
指導教授 楊思明(Sze-Ming Yang) 審核日期 2002-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明