博碩士論文 89321036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.218.184.214
姓名 蔡俊煌(Chun-Huang Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
(CO2 Reforming of Methane on Ni/Mg-Al-O Catalyst)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究以共沈澱法製備具有不同Mg/Al比例及不同Ni負載量的hydrotalcite先驅物Ni/HT(x),經高溫煅燒製得觸媒Ni/HTc(x)。利用X光繞射光譜(XRD)、全表面積測定 (BET) 、X-光電子光譜儀 (XPS) 、氫程溫脫附 (H2-TPD) 、氫程溫還原 (H2-TPR) 對觸媒的物理結構及表面性質做鑑定分析。藉由CH4/CO2重組反應測試,探討不同煅燒溫度、還原溫度、Mg/Al比例、Ni負載量及反應溫度之影響,並進行長時間反應穩定性測試,觀察上述之不同變因對觸媒壽命期之影響,並以程溫氫化反應(H2-TPSR)分析觸媒表面積碳,探討觸媒積碳阻抗的能力。
Ni/HTc(x)於800℃煅燒具有高表面積(125 m2/g以上),原觸媒先驅物Ni/HT(x)的hydrotalcite層狀結構經高溫煅燒瓦解形成Mg-Al-O共氧化物,隨著煅燒溫度上升,NiO與MgO逐漸形成固溶。Ni/HTc(x)觸媒不易還原,所需的還原溫度較傳統觸媒Ni/γ-Al2O3及Ni/SiO2高出釵h,且隨著煅燒溫度和Mg/Al比例的增加而增加,此外XPS表面組成分析發現Ni/(Mg+Al)莫耳比隨著煅燒溫度上升而下降,進一步證實NiO和MgO確實形成固溶,增加NiO-MgO之間的作用力。
CH4/CO2重組反應結果知CO2轉化率皆高於CH4轉化率,且CO/H2比值介於1.0~1.2之間。RWGS反應是主要的副反應,同時亦發生蒸氣重組反應,使CO/H2比值趨近於理論值1。CH4及CO2轉化率隨Ni負載量、還原及反應溫度上升而增加;隨煅燒溫度及Mg/Al比上升而減小。CH4/CO2重組反應結果以800℃煅燒,500℃還原,Mg/Al比3,8%Ni負載量,700℃反應溫度條件下的8%Ni/HTc(3)觸媒有較好的穩定性。8%Ni/HTc(3)與8%Ni/HTc(3)im(含浸法製備)、8%Ni/γ-Al2O3及8%Ni/SiO2觸媒進行CH4/CO2重組反應比較下,8%Ni/HTc(3)觸媒有最佳穩定性,H2-TPD計算得8%Ni/HTc(3)有最佳分散度,H2-TPSR亦發現8%Ni/HTc(3)觸媒有最佳的積碳阻抗。
摘要(英) In this study,we prepared different Mg/Al ratios and Ni loading precursor by coprecipitation method,and then calcined at high temperature to prepare Ni/HTc(x) catalysts.
XRD 、BET、XPS、H2-TPR、H2-TPD were used to study the structure and surface properties.
The effect of different calcination temperature、reducing temperature、Mg/Al ratios、Ni loading and reaction temperature was studied by CH4/CO2 reforming.H2-TPSR was used to study coking resistance of catalyst.
Ni/HT(x) has the same structure with hydrotalcite,after calcined at high temperature,the layer stuucture was collased and became Mg-Al-O mixed-oxides,the surface also increased. As the calcined temperature increased NiO and MgO became solid solution.
It is hard to reduce Ni/HTc(x) catalyst,and reducing temperature is higher than Ni/γ-Al2O3 and Ni/SiO2 catalyst. XPS found that Ni/(Mg+Al) ratio reduce as calcination temperature increase,furthre prove NiO and MgO were formed solid solution.
In CH4/CO2 reformimg we found that 8%Ni/HTc(3) catalyst ,calcined at 800℃ ,reduced at 500℃ , Mg/Al ratio is 3,and 700℃ reaction temperature had the best stability than 8%Ni/γ-Al2O3,8%Ni/SiO2. H2-TPSR also found that 8%Ni/HTc(3) had best coking resistance.
關鍵字(中) ★ 合成氣
★ 鎳鎂鋁氧觸媒
★ 重組反應
關鍵字(英) ★ Surported Nickel Catalyst
★ Mg/Al mixed oxide
★ Hydrotalcite
★ Syngas
★ CH4/CO2 reforming
論文目次 目錄
第一章 緒 論 1
第二章 文獻回顧 3
2-1 CH4/CO2在過渡金屬觸媒上之重組反應 ……………….. 3
2-1-1 Ru、Rh觸媒 …………………………………………….. 4
2-1-2 Pt、Pd金屬觸媒 ………………………………………… 9
2-1-3 Ni金屬觸媒 ……………………………………………… 15
2-2 Mg/Al hydrotalcites擔體 ……………………………….… 21
2-2-1 Mg/Al hydrotalcite之製備 ………………………………. 21
2-2-2 Mg/Al hydrotalcite結構性質 ……………………………. 22
2-2-3 Mg/Al hydrotalcite熱處理前後之性質 …………………. 23
2-2-4 Mg/Al hydrotalcite觸媒相關性質 ………………………. 24
第三章 實驗方法與設備3-1 Ni/Mg-Al-O(X%Ni/HT(x))先驅物與觸媒之製備 ………...
3-2 Ni/HTc(x)觸媒之加工 ……………………………………... 262627
3-3 其他觸媒之製備 …………………………………………… 28
3-4 氫-程溫還原(H2-TPR) ……………………………………… 28
3-5 氫-程溫脫附(H2-TPD) ……………………….…………….. 30
3-6 全表面積的量測 …………………………………………… 32
3-7 X-射線繞射分析(XRD) ……………………………………. 33
3-8 X-射線光電子光譜(XPS) ………………………………….. 33
3-9 氫-程溫反應 (H2-TPSR) ……………………………………3-10 CH4/CO2於Ni/HTc(x)觸媒之重組反應研究 ………………
3436
3-11 使用藥品 …………………………………….……………... 39
第四章 結果與討論 41
4-1 Ni/HT(x)先驅物與Ni/HTc(x)觸媒之製備與鑑定 ………. 41
4-1-1 XRD結構分析 …………………………….…………….. 42
4-1-2 BET表面積測量 ………………………………………… 48
4-2 觸媒表面性質分析 ………………………….……………. 50
4-2-1 氫-程溫還原(H2-TPR) ………………………………….….. 50
4-2-2 氫程溫脫附(H2-TPD) …………….………………………... 56
4-2-3 8%Ni/HTc(3)觸媒表面組成分析(XPS) …………………. 62
4-3 CH4/CO2重組反應 ……………………………………….. 64
4-3-1 不同煅燒溫度之影響 …………………………………….. 64
4-3-2 不同還原溫度的影響 …………………………………….. 69
4-3-3 不同Mg/Al比例之影響 ……………………………….… 73
4-3-4 不同Ni負載量的影響 ……………………………………. 77
4-3-5 不同反應溫度的影響 …………………………………….. 81
4-3-6 不同擔體Ni觸媒反應穩定性的比較 …………………… 85
4-3-7 不同擔體Ni觸媒積碳阻抗之比較(TPSR) ………………. 88
第五章 結論 91
總結 92
參考文獻 93
圖目錄
圖2-1 Schematic representation of the proposed mechanism of CO /CH4 reforming over Pt-ZrO2……………………………... 12
圖2-2 Pt/ZrO2於CH4/CO2重組反應機構圖…………………….. 12
圖3-1 氫程溫還原裝置圖………………………………………… 29
圖3-2 氫程溫脫附裝置圖………………………………………… 31
圖3-3 氫程溫反應裝置圖………………………………………… 35
圖3-4 CH4/CO2重組反應實驗裝置示意圖………………………. 38
圖4-1 觸媒先驅物8%Ni/HT(x)之X-ray繞射光譜圖…………… 44
圖4-2 8%Ni/HT(3)經不同溫度煅燒之X-ray繞射光譜圖………. 45
圖4-3 8%Ni/HTc(x)之X-ray繞射光譜圖………………………… 46
圖4-4 x%Ni/HTc(3)之X-ray繞射光譜圖………………………… 47
圖4-5 不同煅燒溫度8%Ni/HTc(3)觸媒之程溫還原圖譜……….. 52
圖4-6 不同擔體Ni觸媒之程溫還原圖譜……………………….. 53
圖4-7 不同Mg/Al比觸媒8%Ni/HTc(x)之程溫還原圖譜……… 54
圖4-8 不同Ni負載觸媒x%Ni/HTc(3)之程溫還原圖譜………….. 55
圖4-9 不同煅燒溫度8%Ni/HTc(3)之氫程溫脫附圖譜…………… 58
圖4-10 8%Ni/HTc(x)之氫程溫脫附圖譜………………………… 59
圖4-11 不同煅燒溫度8%Ni/HTc(3)觸媒之CH4轉化率………… 66
圖4-12 不同煅燒溫度8%Ni/HTc(3)觸媒之CO2轉化率………… 67
圖4-13 不同煅燒溫度8%Ni/HTc(3)觸媒之CO/H2比值………… 68
圖4-14 不同還原溫度8%Ni/HTc(3)觸媒之CH4轉化率………… 70
圖4-15 不同還原溫度8%Ni/HTc(3)觸媒之CO2轉化率………… 71
圖4-16 不同還原溫度8%Ni/HTc(3)觸媒之CO/H2比值………… 72
圖4-17 8%Ni/HTc(x)觸媒之CH4轉化率…………………………. 74
圖4-18 8%Ni/HTc(x)觸媒之CO2轉化率…………………………. 75
圖4-19 8%Ni/HTc(x)觸媒CO/H2比值……………………………. 76
圖4-20 不同Ni負載量之CH4轉化率……………………………. 78
圖4-21 不同Ni負載量之CO2轉化率……………………………. 79
圖4-22 不同Ni負載量之CO/H2比值……………………………. 80
圖4-23 8%Ni/HTc(3)觸媒在不同反應溫度之CH4轉化率………. 82
圖4-24 8%Ni/HTc(3)觸媒在不同反應溫度之CO2轉化率………. 83
圖4-25 8%Ni/HTc(3)觸媒在不同反應溫度之CO/H2比值………. 84
圖4-26 不同擔體Ni觸媒之CH4轉化率………………………….. 86
圖4-27 不同擔體Ni觸媒之CO2轉化率………………………….. 87
圖4-28 不同擔體Ni觸媒TPSR圖譜……………………………... 89
表目錄
表4-1 8%Ni/HT(x)先驅物之表面積………………………………48
表4-2 8%Ni/HTc(3) 經不同溫度煅燒觸媒之表面積…………….49
表4-3 不同Mg/Al比8%Ni/HTc(x)觸媒之表面積……………….49
表4-4 不同煅燒溫度8%Ni/HTc(3)觸媒之氫吸附量與分散度…. 57
表4-5 8%Ni/HTc(x)與傳統觸媒之氫吸附量與分散度…………...60
表4-6 8%Ni/HTc(3)觸媒不同還原溫度之氫吸附量與分散度……60
表4-7 x%Ni/HTc(x)觸媒之氫吸附量與分散度……………………61
表4-8 不同煅燒溫度及不同還原溫度的8%Ni/HTc(3)觸媒之XPS表面分析結果………………………………………………..63
表4-9 不同Ni觸媒之積碳.…………………………………………90
參考文獻 參考文獻
1. J. R. Rostrup-Niesen, and J. H. Bak-Hansen,“CO2-Reforming of Methane over Transition Metals”, J. Catal., 144 (1993) 38.
2. Y. G. Chen, K. Tomishige, K. Yokoyama, and K. Fujimoto, “Promoting Effect of Pt, Pd and Rh Noble Metals to the Ni0.03Mg0.97O Solid Solution Catalysts for the Reforming of CH4 with CO2 ”, Appl. Catal. A, 165 (1997) 335.
3. Y. G. Chen, K. Tomishige, and K. Fujimoto,“Formation and Characteristic Properties of Carbonaceous Species on Nickel-Magnesia Solid Solution Catalysts during CH4-CO2 Reforming Recation ”, Appl. Catal. A, 161 (1997) L11.
4. Y. G. Chen, K. Tomishige, and K. Fujimoto,“Studies on Carbon Deposition in CO2 Reforming of CH4 over Nickel-Magnesia Solid Solution Catalysts ”, J. Catal., 181 (1999) 91.
5. E. Ruckenstein, and Y. H. Hu,“Carbon Dioxide Reforming of Methane over Nickel/Alkaline Earth Metal Oxide Catalysts”, Appl. Catal. A, 133 (1995) 149.
6. Y. H. Hu, and E. Ruckenstein,“An Optimum NiO Content in the CO2 reforming of CH4 with NiO/MgO Solid Solution Catalysts ”, Catal. Lett., 36 (1996) 145.
7. E. Ruckestin, and Y. H. Hu,“Temperature-Programmed Desorption of CO Adsorbed on NiO/MgO ”, J. Catal., 163 (1996) 306.
8. E. Ruckenstein, Y. H. Hu,“The Effect of Precursor Conditions of MgO on the CO2 Reforming of CH4 over NiO/MgO Catalysts”, Appl. Catal. A, 154 (1997) 185.
9. Y. H. Hu, and E. Ruckenstein,“The Characterization of a Highly Effective NiO/MgO Solid Solution Catalysts in the CO2 Reforming of CH4 ”, Catal. Lett., 43 (1997) 71.
10. F. Cavani, F. Trifiro, and A. Vacari,“Hydrotalcite-type Anionic Clays: Preparation, Properties and Applications”, Catal. Today., 11 (1991) 173.
11. W. T. Reichle,“Catalytic Reactions by Thermally Activated Anionic Clay Minerals ”, J. Catal., 94 (1985) 547.
12. Z. L. Zhang, V. A. Tsipouriari, A. M. Efstathiou, and X. E. Verykios,“Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts”, J. Catal., 158 (1996) 51.
13. A. M. Efstathiou, A. Kladi, V. A. Tsipouriari, and X. E. Verykios,“Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts”, J. Catal., 158 (1996) 64.
14. J. Erdohelyi, Cserenyi, and F. Solymosi,“Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts”, J. Catal., 141 (1993) 287.
15. J. Nakumara, K. Aikawa, K. Sato, and T. Uchijima,“Role of Support in Reforming CH4 with CO2 over Rh Catalysts”, Catal. Lett., 25 (1994) 265.
16. N. Matsui, K. Anzai, N. Akamatsu, K. Nakagawa, N. Ikenaga, and T. Suzuki, “Reaction Mechanisms of Carbon Dioxide Reforming of Methane with Ru-loaded Lanthanum Oxide Catalyst“ , Appl. Catal. A, 179 (1999) 247.
17. C. T. Au, and H. Y. Wang,“Carbon Dioxide Reforming of Methane to Syngas over SiO2-Supported Rhodium Catalysts”, Appl. Catal. A, 155 (1997) 239.
18. J. H. Bitter, K. Seshan, and J. A. Lercher,“The State of Zirconia Supported Platinum Catalysts for CO2/CH4 Reforming”, J. Catal. 171 (1997) 279.
19. J. H. Bitter, K. Seshan, and J. A. Lercher,“Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts”, J. Catal., 176 (1998) 93.
20. J. H. Bitter, W. Hally, L. Seshan, J. G. Van-Ommen, and J. A. Leachr,“The Role of the Oxidic Support on the Deactivation of Pt Catalysts during the CO2 Reforming of Methane ”, Catal. Today, 29 (1996) 349.
21. K. Nagaoka, K. Seshan, Ken-ichi Aika, and J. A. Lercher,“Carbon Deposition during Carbon Dioxide Reforming of Methane-Comparison between Pt/Al2O3 and Pt/ZrO2 ”, J. Catal. 197 (2001) 34.
22. A. N. J. Vankeulen, K. Seshan, J. H. B. J. Hoobink, and J. R. H. Ross,“TAP Investigation of the CO2 Reforming of CH4 over Pt/ZrO2”, J. Catal., 166 (1997) 306.
23. Yin-Zu Chen, Biing-Jye Liaw, Ching-Fu Kao, Jung-Chih Kuo, “Yttria-Stabilized Zirconia Supported Platinum Catalysts (Pt/YSZs) for CH4/CO2 Reforming”, Appl. Catal. A, 217 (2001) 23.
24. 賴文漢,“CH4 +CO2於ZrO2/SiO2和La2O3/Al2O3負載式鉑觸媒之重組反應研究”,中央化工所碩士論文 (2000).
25. F. Solymosi, J. Cserenyi, E. Papp, and A. Erdohelyi,“Catalytic Reaction of Methane with Carbon Dioxide over Supported Palladium ”, Appl. Catal. A, 108 (1994) 205.
26. F. Solymosi, J. Cserenyi, A. Felvegi, and A. Erdohelyi,“Decomposition of CH4 over Supported Pd Catalysts”, J. Catal., 147 (1994) 272.
27. S. Wang, and G. Q. Lu,“Reforming of Methane with Carbon Dioxide over Ni/Al2O3:Effect of Nickel Precursor”, Appl. Catal. A, 169 (1998) 271.
28. S. S. Wang, and G. Q. Lu, “CO2 Reforming of Methane on Ni Catalysts:“Effect of the Support Phase and Preparation Technique ”, Appl. Catal. B, 16 (1998) 269.
29. M. C. J. Bradford, and M. A. Vannice,“Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts I. Catalyst Characterization and Activity”, Appl. Catal. A, 142 (1996) 73.
30. F. Arena, B. A. Horrell, D. L. Cocke, A. Parmaliana, and A. Giordano, “Magnesia-Supported Nickel Catalysts I. Factors Affecting the Structure and Morphological Properties”, J. Catal., 132 (1991) 58
31. F. Arena, B. A. Horrell, D. L. Cocke, A. Parmaliana, and A. Giordano,“Magnesia-Supported Nickel Catalysts Ⅱ. Surface Properties and Reactivity in Methane Steam Reforming”, J. Catal., 141 (1993) 34.
32. E. Ruckestin, and Y. H. Hu,“High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts”, J. Catal., 184 (1999) 298.
33. M. C. J. Bradford, and M. A. Vannice,“ Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts Ⅱ. Reaction Kinetics”, Appl. Catal. A, 142 (1996) 97.
34. Z. X. Cheng, X. G. Zhao, J. L. Li, and Q. M. Zhu,“Role of Support in CO2 Reforming of CH4 over a Ni/γ-Al2O3 Catalyst”, Appl. Catal. A, 205 (2001) 31.
35. A. Corma, V. Fornes, and F. Rey,“Hydrotalcites as Base Catalyst: Influence of the Chemical Composition and Synthesis Condition on the Dehydrogenation of Isopropanol”, J. Catal., 148 (1994) 205.
36. A. L. McKenzie , C. T. Fishel, and T. J. Davis, “Investigation of the Surface Structure and Basic Properties of Calcined Hydrotalcites”, J. Catal., 138 (1992) 547.
37. 廖志偉,“一步合成甲基異丁基酮之多弁鉔眼C研究-Pd (Ni) / hydrotalcite”, 中大化工所碩士論文 (1996).
38. H. Schaper, J. J. Berg-Slot, and W. H. J. Stork, Thermochimica Acta, (1989) 79.
39. J. M. Lopez Nieto, A. Dejoz, and M. I. Vazquez,“Preparation, Characterization and Catalytic Properties of Vanadium Oxides Supported on Calcined Mg/Al-hydrotalcite ”, Appl. Catal. A, 132 (1995) 41.
40. D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini, and E. Farronn,“Textural Properties and Catalytic Activity of Hydrotalcites ”, J. Catal., 151 (1995) 50.
41. A. Corma, V. Fornes, R. M. Martin-Aranda, and F. Rey, “Determination of Base Properties of Hydrotalcites: Condensation of Benzaldehyde with Ethyl Acetoacetate”, J. Catal., 134 (1992) 58.
42. C. P. Keikar, and A. A. Schutz,“Ni-, Mg- and Co-containing Hydrotalcite-like Materials with a Sheet-like Morphology: Synthesis and Characterization”, Microporous Material, 10 (1997) 163.
43. M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, and J. Cornejo,“Adsorption of Anionic Species on Hydrotalcite-like Compounds: Effect of Interlayer Anion and Crystallinity”, Appl. Clay Sci., 18 (2001) 17 .
44. C. Fornasari, M. Gazzano, D. Matteuzzi, F. Trifiro, and A. Vaccari“Structure and Reactivity of High-surface-area Ni/Mg/Al Mixed Oxides”, Appl. Clay Sci., 10 (1995) 69 .
45. 李東穎,“Pd (Ni) / hydrotalcite觸媒於苯酚一步合成還己酮之研究”, 中大化工所碩士論文 (1997).
指導教授 陳吟足(Yn-Zu Chen) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明