博碩士論文 89321038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.12.161.77
姓名 陳建清(Jian-Ging Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 LiNi0.8Co0.2O2陰極材料製程與改質研究
(Improved Procedures for the Synthesis of LiNi0.8Co0.2O2 Cathode Materials)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ 由花生殼製備鋰離子電池高電容量負極碳材料
★ 鋰離子電池層狀結構陰極材料合成與改質研究★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究
★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究
★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文共分為五大部分,(A)部分為以草酸當作螯合劑,溶膠凝膠法合成LiNi0.8Co0.2O2材料,利用XRD探討各製程所得材料之結構變化,並以SEM觀察合成材料之表面型態,進而測試各材料之電池性能,以求出最佳合成條件,其合成變因為煆燒溫度、時間、鋰計量及摻雜鍶離子等;(B)部分和(A)部分雷同,只改變螯合劑種類,主要以順丁烯二酸為探討的對象,其合成變因為煆燒溫度、時間、鋰計量、螯合劑量、溶劑種類及摻雜鍶離子;(C)部分為在相同之最佳煆燒條件下,以丙二酸、丁二酸、己二酸、辛二酸、癸二酸、酒石酸、丙酸及檸檬酸等有機酸為螯合劑,探討不同碳數 (分子內之-CH2-群數目)對於合成LiNi0.8Co0.2O2陰極材料之電池性能的影響。
(D)部分和前三部分之合成方法不同,此合成方法為高溫固態法,探討摻雜鋅金屬離子於LiNi0.8Co0.2O2陰極材料,研究是否會改善其電池性能,並以DSC研究材料之熱穩定性,且利用交流阻抗法及循環伏安法分析材料的電化學性質;(E)部分和(D)部分相似,皆以高溫固態法為合成方法,並摻雜其它非過渡金屬離子 (鎂、鋅、鋁)於Li1.05Ni0.7Co0.2Ti0.05O2材料中,探討材料之電池性能,並利用DSC研究材料之熱穩定性,且使用循環伏安法分析材料的電化學性質。
(A) 以草酸為螯合劑合成LixNi0.8Co0.2O2陰極材料
本實驗所得的最佳煆燒溫度為800 ℃及煆燒時間為12小時,其合成材料之第一次循環放電電容量為163 mAh/g,且經十次循環之後,其放電電容量為158 mAh/g。加入微量的鍶離子以取代鋰離子位置的效應,並改善材料的電池性能,而摻雜鍶離子濃度以Sr2+/Li+值 (10-4~10-8)表示。當Sr2+/Li+值為10-6時,材料之第一次可逆電容量最高,且循環穩定性亦為所有摻雜材料中之最佳,其第一次循環放電電容量為173 mAh/g,且經一百次循環之後,放電電容量為138 mAh/g,電荷維持率為80.1 %。接著探討加入過量的鋰之效應,結果發現LxNi0.8Co0.2O2 (x=1.10)材料之電池性能最佳,其第一次循環可逆電容量為182 mAh/g,經五十次循環測試後,可逆電容量為153 mAh/g,電荷維持率為84.1 %。雖然此材料比市售FMC LiNi0.8Co0.2O2之電荷維持率 (100 %)低,但LixNi0.8Co0.2O2 (x=1.10)材料之可逆電容量卻高於市售FMC 之LiNi0.8Co0.2O2 (第一次循環電容量為166 mAh/g)。
(B) 以順丁烯二酸為螯合劑合成LixNi0.8Co0.2O2陰極材料
以順丁烯二酸為螯合劑,並採用溶膠凝膠法合成LiNi0.8Co0.2O2陰極材料。利用不同的合成條件 (溶劑、煆燒時間、煆燒溫度、酸對金屬離子比(R)與鋰計量比等)以改質材料,並求得理想的合成條件,製備出擁有最佳電化學性質材料。本研究所得到的最佳合成條件為以乙醇為溶劑,煆燒溫度800℃,煆燒時間12小時,並在氧氣氣氛之下合成LiNi0.8Co0.2O2陰極材料。上述合成條件下所得出的材料,在充放電速率為0.1 C-rate及充放電截止電壓分別為4.2與3.0 V時,第一次循環放電電容量為190 mAh/g,且經十次循環之後,其放電電容量為183 mAh/g。
(C) 以各種螯合劑合成LiNi0.8Co0.2O2陰極材料
草酸至癸二酸 (碳數從0至8)為螯合劑,所合成之LiNi0.8Co0.2O2材料的電池性能,以己二酸 (碳數為4)表現最佳,第一次及第十次循環可逆電容量分別為178 mAh/g與166 mAh/g,電荷維持率為93.3 %,且發現隨碳數的增加 (草酸至癸二酸),其pH值亦隨之增加 (0.05至1.58)。
(D) 摻雜鋅金屬離子合成Li1.05ZnxNi0.8-xCo0.2O2 (x=0.00至0.01)
以傳統高溫固態法合成Li1.05Ni0.8Co0.2O2,並以鋅摻雜於此材料中。由X光繞射分析得知,少量的鋅佔據鈷及鎳的位置,因而改變晶格結構。以2032硬幣型電池測試所合成材料之電池性能,發現摻雜鋅之Li1.05Ni0.8Co0.2O2材料之可逆電容量與循環效率均顯著增加,尤其Li1.05Zn0.0025Ni0.8Co0.2O2材料,在充放電截止電壓範圍分別為4.2 與3.0 V時,第一次可逆電容量為170 mAh/g,經過一百次充放電之後,可逆電容量為138 mAh/g,其循環效率為81.0 %;未摻雜鋅之Li1.05Ni0.8Co0.2O2材料,第一次可逆電容量為158 mAh/g,經過一百次充放電之後,可逆電容量為97 mAh/g,其循環效率為61.4 %,且由較大範圍之充放電截止電壓分別為4.4與2.5 V及高溫 (55 ℃)電池測試之後,發現摻雜鋅可有效地強化材料之晶體結構,並改善其電化學性質。
(E) 摻雜兩種不同金屬於Li1.05Ni0.8Co0.2O2合成Li1.05Ni0.7Co0.2Ti0.05M0.05O2 (M= Mg, Zn或Al)
本實驗是以摻雜三種不同金屬於Li1.05Ni0.7Co0.2Ti0.05O2材料中,結果得知摻雜鋁於Li1.05Ni0.7Co0.2Ti0.05O2陰極材料,第一次可逆電容量為153 mAh/g,經十次循環後,電荷維持率為98 %,且經一百次循環後,電荷維持率高達84.3%;摻雜鎂之材料,第一次可逆電容量為145 mAh/g,經十次循環後,電荷維持率為100 %,且經一百次循環後,電荷維持率高達91.0 %;摻雜鋅之材料,第一次可逆電容量為140 mAh/g,經十次循環後,電荷維持率為98 %,且經一百次循環後,電荷維持率高達82.1 %,故摻雜鋁之材料,其電荷維持率卻不及摻雜鎂之材料,而電池性能最差者應屬於摻雜鋅之材料。由DSC測試得知,摻雜鎂可有效地改善材料之熱穩定性,但摻雜鋅卻無助益。
摘要(英) The work embodied in this dissertation may be divided into five parts. (A): oxalic acid as a chelating agent for the sol-gel synthesis of LiNi0.8Co0.2O2. The various synthesis parameters such as calcination temperature, duration of heat treatment, lithium stoichiometry and dopant ion (Sr2+) concentration were optimized in order to obtain the best-performing cathode material. The structural and morphological characterizations of the products were done by XRD and SEM, respectively. The lithium intercalation properties were studied by galvanostatic charge-discharge cycling. (B): This part is similar to Part (A) except that the chelating agent was maleic acid. The effects of solvent and the acid-to-total cation ratio (R) were investigated. (C): Having identified the optimal calcination conditions (800°C and 12 h), the effect of the carbon number of the dicarboxylic acids (defined as the number of –CH2– groups in the molecule) on the sol-gel synthesis of LiNi0.8Co0.2O2 was investigated.
(D): A solid-state procedure was adopted for the synthesis of Zn-doped LiNi0.8Co0.2O2 with the aim of unraveling the role of the size-invariant Zn ions towards the stabilization and, consequently, the cyclability of the cathode material. Cyclic voltammetry and electrochemical impedance measurements were made to understand the electrochemical features of the samples. DSC experiments were carried out to study the thermal stability of the doped materials. (E): The enhancement in the electrochemical and thermal characteristics of solid-state prepared LiM0.05Ti0.05Ni0.70Co0.20O2 (M = Mg, Al, Zn) were investigated by cyclic voltammetry, DSC and galvanostatic charge-discharge studies.
(A) Oxalic acid as a chelating agent for the sol-gel preparation of LiNi0.8Co0.2O2
The best synthesis condition was a calcination treatment at 800°C for 12 hours. A product synthesized under this condition gave a first discharge capacity of 163 mAh/g, which faded to 158 mAh/g in the tenth cycle, registering charge retention of 96.4%. In order to improve the cathodic performance, doping with Sr was attempted. The amount of the dopant was such that the Sr2+/Li+ ratio was between 10-8 and 10-4. At a Sr2+/Li+ ratio of 10-6, the first and the hundredth cycle capacities of the material were 173 and 138 mAh/g, respectively, with charge retention of 80.1%. Among the lithium-rich phases studied (Li stoichiometries: 1.00 to 1.15), the most desirable results were obtained at a lithium stoichiometry of 1.10, with a first discharge capacity of 182mAh/g. The fiftieth cycle capacity of this material was 153 mAh/g, corresponding to charge retention of 84.1%. The synthesized sample was compared to a commercial sample obtained from the Foote Mineral Corporation (FMC). Although the charge retention value after ten cycles for the FMC sample was an impressive 100%, its first-cycle discharge capacity (166 mAh/g) was inferior to that of our samples.
(B) Maleic acid as a chelating agent for the synthesis of LiNi0.8Co0.2O2
The various synthesis parameters such as calcination temperature, duration of heat treatment, solvent, acid-to-total cation ratio (R) and lithium stoichiometry were optimized in order to obtain a cathode material with desirable electrochemical properties. The ideal conditions were a heat treatment protocol of 800°C for 12 hours in flowing oxygen, with ethanol as the solvent, at an R value of 1 and a lithium stoichiometry of 1.00. A product synthesized under these conditions yielded a first-cycle capacity of 190 mAh/g at a discharge rate of 0.1 C between 3.0 and 4.2 V. The capacity of the material in the tenth cycle was 183 mAh/g.
(C) Dicarboxylic acids as chelating agents for the sol-gel synthesis of LiNi0.8Co0.2O2
Six dicarboxylic acids (oxalic acid to sebacic acid, representing carbon numbers 0 to 8) were used as chelating agents for the synthesis of LiNi0.8Co0.2O2. The best results were obtained with adipic acid, which has a carbon number of 4. The first and tenth cycle capacities for the products obtained with this acid were 178 and 166 mAh/g, respectively. The charge retention after ten cycles was 93%. The pH of the as-prepared precursor (0.05 to1.58) was found to increase linearly with the carbon number (0 to 8).
(D) Zn-doped lithium-nickel-cobalt oxides, Li1.05ZnyNi0.8-yCo0.2O2 (y = 0.0000 to 0.0100)
Zn-doped Li1.05ZnyNi0.8-yCo0.2O2 compositions were synthesized by a conventional solid-state method. The products were characterized by XRD, galvanostatic cycling, cyclic voltammetry, electrochemical impedance spectroscopy and thermal analysis. For the Li1.05Zn0.0025Ni0.7975Co0.2O2 sample cycled between 3.0 and 4.2 V, the discharge capacities in the first and hundredth cycles were 170 and 138 mAh/g, respectively, registering charge retention of 81.0%. The corresponding values for the undoped material were 158 and 97 mAh/g, with charge retention of 61.4%. The improved electrochemical properties of the doped system were attributed to the structural stability derived from incorporating the size-invariant Zn2+ ions. The Zn-doped system also showed improved capacity and cyclability when the cycling was performed in a wider voltage window (2.5 to 4.4 V) as well as at an elevated temperature (55°C).
(E) Electroanalytical and thermal stability studies of multi-doped lithium-nickel-cobalt oxides
A solid-state fusion method was employed for the synthesis of LiM0.05Ti0.05Ni0.70Co0.20O2 (M = Mg, Al, Zn). Al as a co-dopant yielded a first-cycle capacity of 153mAh/g. The charge retention rates after ten and one hundred cycles were 98.0 and 84.3%, respectively. Although the first-cycle capacity for the Mg-doped material was 145 mAh/g, the charge retentions in the tenth and hundredth cycles were 100 and 91.0%, respectively. Zn as a co-dopant gave a first-cycle capacity of 140 mAh/g. In this case, the capacity retention after ten cycles was 98.0% and after 100 cycles it was 82.1%. DSC data revealed improved thermal stability for the Mg co-doped system. No improvement in the thermal stability of the Zn-doped system was noticed.
關鍵字(中) ★ 電化學
★ 鋰鎳鈷氧化物
★ 鋰離子電池
關鍵字(英) ★ LiNi0.8Co0.2O2
★ Electrochemistry
★ Lithium Batteries
論文目次 目錄
摘要 I
誌謝 VII
目錄 VIII
圖目錄 XIII
表目錄 XVII
一、緒論 1
1-1. 簡介 1
1-2. 研究目的與大綱 3
二、文獻回顧 9
2-1. LiNi1-yCoyO2 (y=0.1~0.3)材料合成法 10
I. 溶膠凝膠理論概論 10
II. 高溫固態法理論概述 12
III. 共沈澱法理論概述 13
2-2. 混合型鋰鎳鈷氧化物晶體結構分析 14
I. 鋰鎳鈷氧化物晶體結構 14
II. XRD鋰鎳鈷氧化物晶體結構 16
2-3. 合成鋰鎳鈷氧化物材料製程之改質研究 16
I. 溶劑 (Solvent) 17
II. 螯合劑 (Chelating agent) 18
III. 不加螯合劑 20
IV. 鋰過計量效應 (Excess lithium stoichiometry) 21
V. 摻雜其它金屬 22
VI. 摻雜非金屬 29
2-4. 利用紅外線吸收儀器鑑定材料 30
2-5. 電化學分析… ……32
I. 循環伏安法 (Cyclic Voltammetry) 32
II. 交流阻抗法 (AC Impedance) 33
a. 交流阻抗法簡介 33
(1) Nyquist Plot 34
(2) Bode Plot 35
(3) Randles Plot 35
(4) 等效元件(Circuit Elements) 36
b. EIS在鋰離子電池系統的應用 38
三、實驗方法 42
3-1. 實驗藥品器材 42
3-2. 實驗儀器 44
3-3. 實驗步驟 45
I. 材料合成 45
a. 以溶膠-凝膠法合成LiNi0.8Co0.2O2陰極材料變化之關係 45
(1) 以草酸為螯合劑,LiNi0.8Co0.2O2之合成步驟 45
(2) 以順丁烯二酸為螯合劑,LiNi0.8Co0.2O2之合成步驟 48
(3) 分別以丙二酸、丁二酸、己二酸、辛二酸、癸二酸、酒石酸、丙酸及檸檬酸為螯合劑,為螯合劑,LiNi0.8Co0.2O2之合成步驟 48
(4) 以草酸或順丁烯二酸為螯合劑,改變不同變因合成LiNi0.8Co0.2O2材料 50
b. 以高溫固態法,摻雜鋅金屬離子合成Li1.05ZnxNi0.8-xCo0.2O2 (x=0.00至0.01) 53
c. 以高溫固態法,摻雜兩種不同金屬離子於Li1.05Ni0.8Co0.2O2合成Li1.05Ni0.7Co0.2Ti0.05M0.05O2 (M= Mg, Zn或Al) 55
II. 材料鑑定分析 56
a. X光粉末繞射儀 (XRD) 56
b.熱分析儀 (TGA與DSC) 57
c.感應耦合電漿原子放射光譜分析 (ICP-AES) 57
d.掃瞄式電子顯微鏡分析 (SEM) 57
III. 硬幣型電池組裝 57
a.陰極之極片製作 57
b.硬幣型電池組裝 58
IV. 電池性能測試 58
V. 電化學分析 60
a. 循環伏安測試 60
(1) 實驗條件 60
(2) CV電極製作 60
b. 交流阻抗測試 60
四、結果與討論 62
4-1. 以草酸為螯合劑合成LixNi0.8Co0.2O2陰極材料 62
I. 熱重分析 63
II. 以XRD分析材料結構 63
a. 煆燒溫度與時間 63
b. 鋰計量 67
c. 摻雜鍶離子 67
III. 以SEM分析合成材料之表面型態 67
IV. 各製程所合成材料之電池性能評估 73
a. 煆燒溫度與時間 73
b. 鋰計量 73
c. 摻雜鍶離子 76
4-2. 以順丁烯二酸為螯合劑合成LiNi0.8Co0.2O2陰極材料 79
I. 熱重分析 79
II. 以XRD分析材料結構 81
a. 煆燒溫度 81
b. 煆燒時間 83
c. 鋰計量 84
d. 螯合劑量 84
e. 溶劑 85
III. 以SEM分析合成材料之表面型態 86
IV. 各製程所合成材料之電池性能評估 88
a. 煆燒溫度與時間 88
b. 鋰計量 88
c. 螯合劑量 91
d. 溶劑 93
4-3. 以各種螯合劑合成LiNi0.8Co0.2O2陰極材料 96
I. 以XRD分析各合成材料之結構 96
II. 各合成材料之電池性能 96
4-4. 摻雜鋅金屬離子合成Li1.05ZnxNi0.8-xCo0.2O2 (x=0.00至0.01) 100
I. X光繞射分析 100
II. 元素分析 103
III. 熱分析 104
IV. 循環伏安法之電化學研究 104
V. 交流阻抗法之電化學研究 106
VI. Li1.05ZnxNi0.8-xCo0.2O2 (x=0.00至0.01)材料之電池性能評估 112
4-5. 摻雜兩種不同金屬於Li1.05Ni0.8Co0.2O2合成Li1.05Ni0.7Co0.2Ti0.05M0.05O2 (M= Mg, Zn或Al) 117
I. 熱分析 117
II. 循環伏安法之電化學研究 118
III. Li1.05Ni0.7Co0.2Ti0.05M0.05O2 (M= Mg, Zn或Al)材料之電池性
能評估 120
五、結論 122
六、參考文獻 126
附錄:
由本論文之研究成果所發表的國際學刊論文,如下所示
1. G. T. K. Fey, V. Subramanian and J. G. Chen, “Synthesis of Non-Stoichiometric Lithium Nickel Cobalt Oxides and Their Structural and Electrochemical Characterization”, Electrochemistry Comm., 3, 234 (2001).
2. G. T. K. Fey , V. Subramanian and J. G. Chen, “Electrochemical Performance of Sr2+ Doped LiNi0.8Co0.2O2 as a Cathode Material for Lithium Batteries Synthesized Via a Wet Chemistry Route Using Oxalic Acid”, Materials Letters, 52, 197 (2002).
3. G. T. K. Fey , R. F. Shiu, V. Subramanian, J. G. Chen, C. L. Chen, “LiNi0.8Co0.2O2 Cathode Material Synthesized by the Maleic Acid Assisted Sol-Gel Method for Lithium Batteries”, J. Power Sources,103, 265 (2002).
4. G. T. K. Fey , T. Akai, H. Masui, V. Subramanian and J. G. Chen, “Sol-Gel Synthesis of LiNi0.8Co0.2O2 via an Oxalate Route and Its Electrochemical Performance as an Intercalation Material for Lithium Batteries”, Materials Chemistry and Physics, in press.
5. G. T. K. Fey, J.G. Chen and V. Subramanian, “Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2”, J. Power Sources, in press.
6. G. T. K. Fey, J.G. Chen and V. Subramanian, “Electroanalytical and Thermal
Stability Studies of Multi-Doped Lithium Nickel Cobalt Oxides ”, J. Power Sources, submitted for publication.
參考文獻 01. M. Armand, in “Materials for Advanced Batteries”, D. W. Murphy, J. Broadhead, and B. C. H. Steele, Editors, p.145, Plenum Press, New York (1980).
02. V. V. Ozeryanskaya, V. E. Guterman, I. L. Shukaev, and V. P. Grigorev, “Phase-Transformations During Electrochemical Incorporation of Lithium in Intermetallic Compounds of Aluminum”, Russian Chemical Bulletin, 47, 1481 (1998).
03. H. Huang, E. M. Kelder, L. Chen, and J. Schoonman, “Electrochemical Characteristics of Sn1-xSixO2 as Anode for Lithium-Ion Batteries”, J. Power Sources, 82, 362 (1999).
04. K. Zaghib, K. Tatsumi, H. Abe, T. Ohsaki, Y. Sawada and S. Higuchi, “Electrochemical Behavior of an Advanced Graphite Whisker Anodic Electrode for Lithium-Ion Rechargeable Batteries”, J. Power Sources, 54, 435 (1995).
05. Y. E. Eli and V. R. Koch, “Chemical Oxidation: A Route to Enhanced Capacity in Li-Ion Graphite Anodes”, J. Electrochem. Soc., 144, 2968 (1997).
06. A. Van der Ven and G. Ceder, “Lithium Diffusion in Layered LixCoO2”, Electrochem. Solid-State Lett., 3, 301 (2000).
07. R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda and M. Takano, “Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides”, J. Solid State Chem., 110, 216 (1994).
08. B. Banov, J. Bourilkov, and M. Mladenov, “Cobalt Stabilized Layered Lithium-Nickel Oxides, Cathodes in Lithium Rechargeable Cells”, J. Power Sources, 54, 268 (1995).
09. Y. M. Choi, S. Pyun, and S. I. Moon, “Effects of Cation Mixing on the Electrochemical Lithium Intercalation Reaction into Porous Li1-δNi1-yCoyO2 Electrodes”, Solid State Ionics, 89, 43 (1996).
10. R. K. B. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. J. Mitchell, and J. W. Richardson Jr., “The Control of Nonstoichiometry in Lithium Nickel-Cobalt Oxides”, J. Power Sources, 81, 535 (1999).
11. R. Gover, R. Kanno, B. Mitchell, A. Hirano, and Y. Kawamoto, “The Effects of Sintering Time on the Structure and Electrochemical Properties of Li(Ni0.8Co0.2)O2”, J. Power Sources, 90, 82 (2000).
12. 徐瑞鋒, 碩士論文, “鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究”, 國立中央大學, 中華民國臺灣 (2000).
13. G. Campet, N. Treuil, A. Poquet, S. J. Hwang, C. Labrugere, A. Deshayes, J.C.
Frison, J. Portier, J. M. Reau, and J.H. Choy, “Plr (Plastic Lithium Rechargeable) Batteries Using Nanoscale Materials - A Convenient Source of Electrical Energy for the Future”, Bull. Korean Chem. Soc. 20 (1999) 880.
14. 王國賢, 碩士論文,“新型鋰二次電池陰極材料之研製”, 國立中央大學, 中華民國臺灣 (1994).
15. 游文雄, 碩士論文,“鋰離子電池混合金屬氧化物陰極材料之電化學特性分析”, 國立中央大學, 中華民國臺灣 (2000).
16. J. Pierre and P. Ramos, “Electrochemical Properties of Cathodic Materials Synthesized by Low-Temperature Techniques”, J. Power Sources, 54, 120 (1995).
17. M. A. Aegerter [Ed.], Sol-Gel:Science and Technology:Proceedings of the Winter School on Glasses and Ceramics from Gels, Brazil, World Scientific, Singapore, 1989.
18. A. C. Pierre, “Introduction to Sol-Gel Processing”, Kluwer Acadmic Publishers, 4 (1998).
19. C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.
20. Z. S. Peng, C. R. Wan and C. Y. Jiang, “Synthesis by Sol-gel Process and Characterization of LiCoO2 Cathode Materials”, J. Power Sources, 72, 215 (1998).
21. M. Kakihana, “Invited Review “Sol-Gel” Preparation of High Temperature Superconducting Oxides”, Journal of Sol-Gel Science and Technology, 6, 7 (1996).
22. Y. M. Choi, S. I. Pyun and S. I. Moon, “Effects of Cation Mixing on the Electrochemical Lithium Intercalation Reaction into Porous Li1-δNi1-yCoyO2 Electrodes”, Solid State Ionics, 89, 43 (1996).
23. C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, and L. Fournes, “An Overview of the Li(Ni, M)O2 Systems:Syntheses, Structures and Properties”, Electrochimica Acta, 45, 243 (1999).
24. B. D. Cullity, “Elements of X-ray Diffraction”, Addison-Wesley Pub. Co, MA, (1978).
25. C. Delmas, I. Saadoune and A. Rougier, “The Cycling Properties of theLixNi1-yCoyO2 Electrode”, J. Power Sources, 43-44, 595 (1993).
26. M. Yoahio, Y. Todorov, K. Yamato, H. Noguchi, J. I. Itoh, M. Okada and Takashi, “Preparation of LiyMnxNi1-xO2 as a Cathode for Lithium-ion Batteries”, J. Power Sources, 74, 46 (1998).
27. M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, and T. Mouri, “Preparation and Properties of LiCoyMn1-x-yO2 as a Cathode for Lithium Ion Batteries”, J. Power Sources, 90, 176 (2000).
28. D. C. Bradly, R. C. Mehrota and D. P. Gaur, “Metal Alkoxides”, Academic Press, Inc., London, p. 149 (1978).
29. H. Taguchi, H. Yoshioka, D. Matsuda, and M. Nagao, “Crystal Structure of LaMnO3+δ Synthesized Using Poly (Acrylic Acid)”, J. Solid State Chem., 104, 460 (1993).
30. Y. K. Sun, I. H. Oh and K. Y. Kim, “Synthesis of LiCo0.5Ni0.5O2 Powders by a Sol-Gel Method”, J. Mater. Chem., 7, 1481 (1997).
31. Y. K. Sun, I. H. Oh, “Synthesis of LiNiO2 Powders by a Sol-Gel Method”, J. Mater. Sci. Lett., 16, 30 (1997).
32. C. Julien, L. E. Farh, S. Gangan and M. Massot, “Studies of LiNi0.6Co0.4O2 Cathode Material Prepared by the Citric Acid-Assisted Sol-Gel Method for Lithium Batteries”, Journal of Sol- Gel Science and Technology, 15, 63 (1999).
33. C. Julien, S. S. Michael and S. Ziolkiewicz, “Structural and Electrochemical Properties of LiNi0.3Co0.7O2 Synthesized by Different Low-Temperature Techniques”, J. Inorganic Materials, 1, 29 (1999).
34. C. C. Chang and Prashant N. Kumta, “ Particulate Sol-Gel Synthesis and Electrochemical Characterization of LiMO2 (M = Ni, Ni0.75Co0.25) Powders”, J. Power Sources, 75, 44 (1998).
35. H. Arai, S. Okada, Y. Sakurai, and J. I. Yamaki, “Reversibility of LiNiO2 Cathode”, Solid State Ionics, 95, 275 (1997).
36. G. T. K. Fey, V. Subramanian, J. G. Chen, “Synthesis of Non-Stoichiometric Lithium Nickel Cobalt Oxides and Their Structural and Electrochemical Characterization”, Electrochem. Communications, 3, 234(2001).
37. M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, and S. Greenbaum, “Electrical Conductivity and 6, 7Li NMR studies of Li1+yCoO2”, Solid State Ionics 93, 227 (1997).
38. K. Takanishi, Y. Matsuda, and J. Tsukamoto, U. S. Patent, 5, 679, Oct. 21, 1997.
39. Z. Liu, A. Yu, and J. Y. Lee, “Synthesis and Characterization of LiNi1-x-yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries”, J. Power Sources, 81, 416 (1999).
40. C. C. Chang, J. Y. Kim, and P. N. Kumta, “Divalent Cation Incorporated Li(1+x)MMgxO2(1+x) (M=Ni0.75Co0.25):Viable Cathode Materials for Rechargeable Lithium-Ion Batteries”, J. Power Sources, 89, 56 (2000).
41. J. Cho, “LiNi0.74Co0.26-xMgxO2 Cathode Material for a Li-ion Cell”, Chem. Mater., 12, 3089 (2000).
42. H. Arai, M. Tsuda, and Y. Sakurai, “Lithium Nickelate Electrodes with Enhanced High-Temperature Performance and Thermal Stability”, J. Power Sources, 90, 76 (2000).
43. B. V. R. Chowdari, G. V. Subba Rao ,and S. Y. Chow, “Cathodic Behavior of (Co, Ti, Mg)-Doped LiNiO2”, Solid State Ionics, 140, 55 (2001).
44. G. T. K. Fey, V. Subramanian and J. G. Chen, “Electrochemical Performance of Sr2+ Doped LiNi0.8Co0.2O2 as a Cathode Material for Lithium Batteries Synthesized via a Wet Chemistry Route Using Oxalic Acid” , Materials letters, 52, 197 (2001).
45. G. T. K. Fey, V. Subramanian and C. Z. Lu, “Improved Electrochemical Properties of Sr2+ Doped LiNi0.8Co0.2O2 Synthesized Via a Sol-gel Route Using Tartaric Acid as a Chelating Agent”, Ionics, 7, 210 (2001)
46. H. J. Kweon and D. G. Park, “Surface Modification of LiSr0.002Ni0.9Co0.1O2 by Overcoating with a Magnesium Oxide”, Electrochemical and Solid-State Letters, 3, 128 (2000).
47. K. Kubo, S. Arai, S. Yamada, and M. Kanda, “Synthesis and Charge-Discharge Properties of Li1+xNi1-x-yCoyO2-zFz”, J. Power Sources, 81-82, 599 (1999).
48. C. Julien, L. EL-Farh, S. Gangan and M. Massot, “Studies of LiNi0.6Co0.4O2 Cathode Material Prepared by the Citric Acid-Assisted Sol-Gel Method for Lithium Batteries ”, Journal of Sol- Gel Science and Technology, 15, 63 (1999).
49. F. Croce, F. Nobili, A. Deptula, W. Lada, R. Tossici, A. D’Epifanio, B. Scrosati, and R. Marassi, “An Electrochemical Impedance Spectroscopic Study of the Transport-Properties of LiNi0.75Co0.25O2”, Electrochemistry Communication, 1, 605 (1999).
50. M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, J. Electroanalytical Chem., 477, 32 (1999).
51. C. Gabrielli, “Identification of Electrochemical Processes by Frequency Response Analysis”, Technical Report Number 004/83, August 1984.
52. G. Nagasubramanian, “Two- and Three-Electrode Impedance Studies on 18650 Li-ion Cells”, J. Power Sources, 87, 226 (2000).
53. E. Karden, S. Buller, and R. W. De Doncker, “A Method for Measurement and Interpretation of Impedance Spectra for Industrial Batteries”, J. Power Sources, 85, 72 (2000).
54. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmas, “Effect of Cobalt Substitution on Cationic Distribution in LiNi1 − yCoyO2 Electrode Materials”, Solid State Ionics, 90, 83 (1996).
55. Y. M. Choi, S. Pyun, J. S. Bae, and S. I. Moon,” Effects of Lithium Content on the Electrochemical Lithium Intercalation Reaction into LiNiO2 and LiCoO2 Electrodes”, J. Power Sources, 56, 25 (1995).
56. B. E. Conway, “Transition from Supercapacitor to Battery Behavior in Electrochemical Energy-Storage”, J. Electrochem. Soc., 138, 1539 (1991).
57. M. D. Levi, and D. Aurbach, “Frumkin Intercalation Isotherm — a Tool for the Description of Lithium Insertion into Host Materials: a Review”, Electrochimica Acta, 45, 167 (1999).
58. A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, and P. Kofstad, “Crystal Structure, Electrical and Magnetic Properties of La1-xSrxCoO3-y”, Solid State Ionics, 80, 189 (1995).
59. A. Van der Ven, G. Ceder, Abstract No. 135, Meeting Abstracts of Battery Division, 1999 Joint International meeting, Honolulu, Hawaii, Oct. 17-22, 1999.
60. A. Van der Ven and G. Ceder, “Lithium Diffusion in Layered LixCoO2”, Electrochem. Solid-State Lett., 3, 301 (2000).
61. J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, Solid State Ionics, 61, 335 (1993).
62. J. R. Dahn, U. Vonsacken, and C. A. Michal, “Structure and Electrochemistry of Li1-yNiO2 and a New Li2NiO2 Phase with the Ni(OH)2 Structure”, Solid State Ionics, 44, 87 (1990).
63. X. Q. Yang, X. Sun, and J. McBreen, “New Findings on the Phase Transitions in Li1-xNiO2: In Situ Synchrotron X-Ray Diffraction Studies”, Electrochem. Communications, 1, 227 (1999).
64. G. T. K. Fey, R. F. Shiu, V. Subramanian, J. G. Chen, and C. L. Chen, “LiNi0.8Co0.2O2 Cathode Materials Synthesized by the Maleic Acid Assisted Sol-Gel Method for Lithium Batteries”, J. Power Sources, 103, 265 (2002).
65. S. Myung, N. Kumagai, S. Komaba, and H. T. Chung, “Effects of Al Doping on the Microstructure of LiCoO2 Cathode Materials”, Solid State Ionics, 139, 47 (2001).
66. W. S. Yoon, K. K. Lee, and K. B. Kim, “Structural and Electrochemical Properties of LiAlyCo1-yO2 Cathode for Li Rechargeable Batteries”, J. Electrochem. Soc., 147, 2023 (2000).
67. C. Delmas, I. Saadoune, and A. Rougier, “The Cycling Properties of the LixNi1-yCoyO2 Electrode”, J. Power Sources, 43/44, 595 (1993).
68. Y. Gao, M. V. Yakovleva, and W. B. Ebner, “Novel LiNi1–xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium-Ion Batteries”, Electrochem. Solid-State Lett., 1, 117 (1998).
69. M.D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, “On Electrochemical Impedance Measurements of LixCo0.2Ni0.8O2 and LixNiO2 Intercalation Electrodes”, Electrochmical Acta, 45, 1781 (2000).
70. E. Rossen, C.D. Jones, and J.R. Dahn, “Structure and Electrochemistry of LixMnyNi1-yO2”, Solid State Ionics, 57, 311 (1992).
71. T. Ohzuku, A. Ueda, and M. Kouguchi, “Synthesis and Characterization of LiAl1/4Ni3/4O2 (R(3)over-Bar-M) for Lithium-Ion (Shuttlecock) Batteries”, J. Electrochem. Soc., 142, 4033 (1995).
72. Y. Gao, M. Yakovleva, E. Ebner, A. Quinn, R. Schwindeman, B. Fitch, and J. Engel, Electrochemical Society, Fall Meeting (1998), Boston, USA.
73. J. Fan and P. S. Fedkiw, “Electrochemical Impedance Spectra of Full Cells - Relation to Capacity and Capacity-Rate of Rechargeable Li Cells Using LiCoO2, LiMn2O4, and LiNiO2 Cathodes”, J. Power Sources, 72, 165 (1998).
74. J. Cho, H. Jung, Y. Park, G. Kim, and H. S. Lim, “Electrochemical Properties and Thermal Stability of LiaNi1-xCoxO2 Cathode Materials”, J. Electrochem. Soc., 147, 15 (2000).
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2002-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明