博碩士論文 89321047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.220.164.172
姓名 許英欽(YING-CHIN HSU)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究
(Effects of glutamic acid supplement and oxygen supply on schizophyllan formation in batch cultures of Schizophyllum commune)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究★ 探討通氣量對於樟芝醱酵生產生物鹼之影響
★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究
★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究★ 探討溫度及剪切力對Actinoplanes sp.生產acarbose 之發酵影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂褶菌為食藥用菇中的一種,食藥用菇最吸引人的地方在其抗癌、抗腫瘤的效果,而裂褶菌於液態葡萄糖培養基培養時產生的胞外多醣,稱為裂褶菌多醣,主要的成份為β-1-3/β-1-6 glucan,經學者確認此結構具有抗癌、抗腫瘤療效,而且經動物與人體試驗證實能有效地提高其免疫機能,活化體內巨噬細胞的吞噬能力,而且裂褶菌多醣可開發為醫藥治療用途,用於幫助增強病人的免疫系統和抵抗腫瘤的能力,因此具有相當潛力被開發為未來醫療用品,或作為近年來國內相當熱門的保健食品,視為未來的明星產品。
為了有效增加裂褶菌多醣的產量,並縮短生產的時間,本研究將利用液態深層發酵來培養生產裂褶菌多醣,採用的菌株為裂褶菌Schizophyllum commune ATCC 38548,其中影響發酵過程的因素很多,本研究將針對培養基的改變與氧氣的問題,探討對裂褶菌生產的影響。據文獻指出,麩胺酸能有效幫助一些微生物於生產過程中提供能量以利於菌體生長和促進多醣生成的增加,因此實驗中選擇添加麩胺酸來探討其對於裂褶菌菌體生長和多醣生成的影響,並利用動力學參數模擬計算出各種參數值,藉由參數值的關係推測麩胺酸與裂褶菌代謝機制的關連性。另外,由於好氧菌進行發酵培養時,氧氣為菌體代謝反應中的限制因子,用以產生能量提供細胞活性的作用,而且根據文獻指出,供氧量的多寡對於菌體生長和多醣生成都有舉足輕重的影響,因此本研究另一項考慮的變因就是供氧量的問題,希望藉由不同供氧量的關係,釐清氧氣在裂褶菌發酵培養中所扮演的角色。最後採用兩階段操作模式,做不同的麩胺酸濃度和供氧量的調控,尋求最適合裂褶菌生產的條件。
在搖瓶實驗中發現,添加麩胺酸有助於多醣產量的增加與轉化率的提升,在菌體濃度方面則因為添加過高濃度的麩胺酸(0.5%),而有抑制菌體生長的現象發生,而搖瓶處於缺氧的狀態下培養,多醣產量高於發酵槽環境,顯示缺氧的狀態下有利於菌體刺激更多的多醣生成。
在發酵槽培養實驗中發現,添加麩胺酸有助於菌體比生長速率的提升,且多醣產量、產率以及轉化率都有明顯增加的趨勢,其中添加5 g/L麩胺酸所得到的產率達0.57 g/L‧day,相較於控制組(0.29 g/L‧day)增加了1.97倍,顯示添加麩胺酸會促使裂褶菌改變其產物代謝途徑,刺激多醣的生成。探討麩胺酸對裂褶菌發酵系統的動力學參數值關係中,其結果顯示隨著麩胺酸濃度升高,動力學參數m值呈現上升的趨勢,因此可推測麩胺酸在裂褶菌發酵系統中是扮演促使多醣生成趨於一次代謝產物的角色。
在改變供氧量的發酵槽實驗中發現,最大菌體濃度、比生長速率以及菌體轉化率都隨著供氧量的降低而有下降的趨勢,顯示低溶氧的狀態不利於菌體的生長;不過對於多醣的產量、產率和轉化率卻是有相當程度的幫助,其中低溶氧(0.05 vvm)的產率為0.406 g/L‧day,相較於高溶氧(0.5 vvm)的0.29 g/L‧day,提高了1.4倍。而兩階段不同供氧量的操作上,發現無論是多醣產量、產率或是轉化率都較單一固定供氧量的結果來的好,其中產率可達0.698 g/L‧day,對於高、低供氧量而言分別增加了2.41與1.72倍。
兩階段的饋料批次操作,得到的多醣濃度效果都比批次操作來的好,其中又以同時添加麩胺酸和葡萄糖將更有助於裂褶菌多醣之生成,產率可高達1.022 g/L‧day,相較於控制組(未添加麩胺酸)的批次發酵結果0.29 g/L‧day,產率提高3.52倍之多。
摘要(英) Cell growth and schizophyllan formation of Schizophyllum commune were greatly influenced by the glutamic acid.Effects of glutamic acid on schizophyllan batch culture were investigated in the batch cultures by glutamic acid supplemented initially from 0 to 5 g/L。The cell growth rate was increased from 0.489 to 0.672 day-1, the productivity was enhanced from 0.29 to 0.57 g/L.day。The product formation kinetics was mixed-type kinetic, and the behavior of product formation was likely to be growth-associated as the concentration of glutamic acid increased.
關鍵字(中) ★ 麩胺酸
★ 裂褶菌多醣
★ 裂褶菌
★ 供氧量
關鍵字(英) ★ glutamic acid
★ Schizophyllan
★ Schizophyllum commune
★ oxygen supply
論文目次 摘要…………………………………………………………………… I
目錄…………………………………………………………………… VI
表索引…………………………………………………………………. IX
圖索引…………………………………………………………………. XI
第一章 緒論………………………………………………………….. 1
1-1研究動機…………………………………………………….. 1
1-2研究目的…………………………………………………….. 6
第二章 文獻回顧…………………………………………………….. 7
2-1真菌菇類的介紹…………………………………………….. 7
2-2真菌多醣的介紹…………………………………………….. 8
2-2-1真菌多醣的特性……………………………………….. 9
2-2-2β-D-葡聚糖的抗腫瘤機制與免疫功能……………….. 12
2-2-3真菌多醣的結構……………………………………….. 14
2-2-4真菌多醣的商業應用價值…………………………….. 18
2-3裂褶菌的介紹………………………………………………. 21
2-4裂褶菌多醣的介紹………………………………………….. 23
2-4-1簡介…………………………………………………….. 23
2-4-2裂褶菌多醣的應用…………………………………….. 25
2-5深層發酵培養……………………………………………….. 28
2-5-1何謂深層發酵培養…………………………………….. 28
2-5-2深層發酵培養的好處…………………………………... 28
2-6影響發酵的物理化學因子………………………………….. 29
2-6-1物理因子……………………………………………….. 29
2-6-2化學因子……………………………………………….. 37
2-7麩胺酸的介紹與效應……………………………………….. 44
2-7-1麩胺酸的簡介………………………………………….. 44
2-7-2麩胺酸的應用………………………………………….. 46
2-7-3麩胺酸的效應………………………………………….. 49
2-8氧氣質傳對於菌體生長與多醣生成之影響……………….. 52
2-9發酵動態行為的數學模式………………………………….. 56
2-9-1菌體生長……………………………………………….. 58
2-9-2產物生成……………………………………………….. 59
2-9-3基質消耗速率………………………………………….. 59
2-10各種反應器之簡介………………………………………… 61
第二章 實驗材料與方法…………………………………………….. 65
3-1整體實驗架構……………………………………………….. 65
3-2實驗材料…………………………………………………….. 66
3-2-1菌株…………………………………………………….. 66
3-2-2培養基組成…………………………………………….. 66
3-2-3實驗藥品……………………………………………….. 67
3-2-4實驗儀器與設備……………………………………….. 69
3-3實驗方法…………………………………………………….. 73
3-4分析方法……………………………………………………. 74
3-4-1菌體乾重測定…………………………………………... 75
3-4-2高效能液相層析儀(HPLC)分析發酵液成份………….. 75
3-4-3多醣濃度分析………………………………………….. 77
第三章 結果與討論………………………………………………….. 80
4-1裂褶菌平面培養菌絲形態………………………………….. 80
4-2搖瓶培養實驗……………………………………………… 81
4-2-1麩胺酸濃度的效應……………………………………... 82
4-2-2不加入葡萄糖僅添加麩胺酸濃度的效應……………... 86
4-3批次發酵培養-麩胺酸濃度的效應………………………… 87
4-3-1菌體顆粒大小的比較…………………………………... 87
4-3-2發酵動力曲線的比較…………………………………... 89
4-3-3麩胺酸濃度對菌體生長的影響………………………... 92
4-3-4麩胺酸濃度對多醣生成的影響……………………….. 94
4-3-5麩胺酸濃度對多醣分子量分布的影響……………….. 96
4-3-6動力學參數的模擬……………………………………... 99
4-3-6-1菌體生長動力學曲線模擬……………………….. 99
4-3-6-2產物生成動力學參數m、n的影響……………… 100
4-3-6-3基質消耗動力學參數α、β的影響…………….. 102
4-4兩階段饋料批次操作……………………………………….. 104
4-4-1發酵動力曲線的比較…………………………………... 104
4-4-2兩階段操作對菌體生長的影響……………………….. 107
4-4-3兩階段操作對多醣生成的影響……………………….. 108
4-5批次發酵培養-供氧量不同的效應………………………… 109
4-5-1菌體顆粒大小的比較………………………………….. 109
4-5-2發酵動力曲線的比較………………………………….. 111
4-5-3供氧量多寡對菌體生長的影響……………………….. 114
4-5-4供氧量多寡對多醣生成的影響……………………….. 115
4-5-5供氧量多寡對多醣分子量分布的影響……………….. 116
4-6兩階段不同供氧量的操作………………………………….. 119
4-6-1發酵動力曲線………………………………………….. 119
4-6-2兩階段供氧量對菌體生長的影響…………………….. 120
4-6-3兩階段供氧量對多醣生成的影響…………………….. 120
4-7批次發酵培養-麩胺酸與供氧量同時存在的效應………… 122
4-7-1發酵動力曲線的比較………………………………….. 122
4-7-2麩胺酸與供氧量對菌體生長的影響………………….. 124
4-7-3麩胺酸與供氧量對多醣生成的影響………………….. 124
4-8兩階段饋料批次操作與供氧量的關係…………………….. 126
4-8-1發酵動力曲線………………………………………….. 126
4-8-2不同供氧量之兩階段操作對菌體生長的影響……….. 127
4-8-3不同供氧量之兩階段操作對多醣生成的影響……….. 128
第四章 結論與建議………………………………………………….. 129
5-1結論………………………………………………………….. 129
5-2建議…………………………………………………………. 131
參考文獻………………………………………………………………. 132
表 索 引
表2-1、菇類多醣類的分布(g/100g 乾物)…………………………. 10
表2-2、利用帶有Sarcoma 180 腫瘤細胞的老鼠進行菇類熱水
萃取液的抗腫瘤性篩選結果………………………………. 11
表2-3、從菇類不同來源分離的抗腫瘤性多醣體………………….. 13
表2-4、目前在日本已成功量產上市的菇類多醣體抗腫瘤製劑….. 20
表2-5、裂褶菌非水溶性多醣組成………………………………….. 24
表2-6、發酵液的流變行為………………………………………….. 32
表2-7、工業發酵上常用的碳源和氮源…………………………….. 39
表2-8、酵母抽出物組成…………………………………………….. 41
表3-1、裂褶菌固態培養基組成…………………………………….. 66表3-2、裂褶菌液態培養基組成…………………………………….. 67
表3-3、實驗藥品詳細目錄………………………………………….. 67
表3-4、儀器設備詳細目錄………………………………………….. 69
表4-1、搖瓶培養下麩胺酸濃度的影響結果……………………….. 85
表4-2、不同麩胺酸濃度的菌體顆粒大小比較…………………….. 87
表4-3、麩胺酸對於裂褶菌批次發酵培養影響的結果…………….. 92
表4-4、麩胺酸對於裂褶菌在不同發酵培養程序中影響的結果……107
表4-5、不同供氧量的菌體顆粒大小比較……………………………109
表4-6、供氧量對於裂褶菌批次發酵培養影響的結果……………..114
表4-7、供氧量對於裂褶菌在不同操作程序中影響的結果………..120
表4-8、不同供氧量下添加5 g/L麩胺酸對裂褶菌發酵培養影響
的結果……………………………………………………….124
表4-9、不同供氧量與操作程序對裂褶菌發酵培養影響的結果…..127
圖 索 引
圖2-1、由β-葡聚糖投藥產生的宿主免疫………………………… 14
圖2-2、有抗腫瘤活性的β-(1-6)分支的β-(1-3)-D-葡聚糖結構….. 16
圖2-3、β-(1-3)-D-葡聚糖結晶結構(用X射線衍射)……………… 16
圖2-4、多醣體分子量與結構及腫瘤抑制率關係圖……………….. 17
圖2-5、裂褶菌子實體(1)……………………………………………. 22
圖2-6、裂褶菌子實體(2)……………………………………………. 22
圖2-7、裂褶菌多醣之結構………………………………………….. 23
圖2-8、絲狀真菌發酵之流變性質交互影響因子………………….. 33
圖2-9、在發酵槽中Penicillium chrysogenum菌體DO分布……… 35
圖2-10、不同碳源對裂褶菌菌絲產量之比較……………………… 51
圖2-11、不同碳源對裂褶菌多醣產量之比較……………………… 51
圖2-12、利用動態氣體處理法決定kLa與OUR的結果圖……….. 53
圖2-13、批次發酵操作下菌體生長和產物生成的動力學關係…… 57
圖2-14、攪拌式反應器裝置實圖…………………………………… 61
圖2-15、氣泡式反應器裝置實圖…………………………………… 62
圖2-16、氣舉式反應器的內部迴路循環器………………………… 63
圖3-1、整體實驗流程圖…………………………………………….. 65
圖3-2、實驗用3L發酵槽裝置實圖………………………………… 71
圖3-3、實驗用發酵控制儀器實圖………………………………….. 71
圖3-4、攪拌式發酵槽的內部裝置………………………………….. 72
圖3-5、發酵液分析流程圖………………………………………….. 74
圖3-6、裂褶菌多醣的螢光光譜圖………………………………….. 78
圖4-1、裂褶菌平面固態培養情形………………………………….. 80
圖4-2、裂褶菌菌絲於顯微鏡放大400倍情形…………………….. 81
圖4-3、麩胺酸濃度對菌體生長之影響…………………………….. 83
圖4-4、麩胺酸濃度對多醣生成之影響…………………………….. 83
圖4-5、菌體對基質的轉化率(Yx/s)………………………………….. 84
圖4-6、多醣對基質的轉化率(Yp/s)………………………………….. 84
圖4-7、多醣對菌體的轉化率(Yp/x)…………………………………. 85
圖4-8、不加入葡萄糖僅添加麩胺酸濃度對菌體生長之影響…….. 86
圖4-9、麩胺酸濃度對菌體形態影響的比較……………………….. 88
圖4-10、麩胺酸濃度0 g/L的發酵動力曲線………………………. 90
圖4-11、麩胺酸濃度1 g/L的發酵動力曲線……………………….. 90
圖4-12、麩胺酸濃度2.5 g/L的發酵動力曲線……………………... 91
圖4-13、麩胺酸濃度5 g/L的發酵動力曲線……………………….. 91
圖4-14、添加麩胺酸濃度的菌體比生長速率……………………… 93
圖4-15、添加麩胺酸濃度的多醣轉化率…………………………… 95
圖4-16、麩胺酸濃度0 g/L的多醣分子量分布圖………………….. 97
圖4-17、麩胺酸濃度1 g/L的多醣分子量分布圖………………….. 97
圖4-18、麩胺酸濃度2.5 g/L的多醣分子量分布圖………………... 98
圖4-19、麩胺酸濃度5 g/L的多醣分子量分布圖………………….. 98
圖4-20、實驗數據與Logistic equation模擬結果比較圖………….. 99
圖4-21、實驗數據與L-P equation模擬結果比較圖……………….101
圖4-22、L-P equation模擬得到的m、n值………………………...101
圖4-23、實驗數據與Modified L-P equation模擬結果比較圖…….103
圖4-24、Modified L-P equation模擬得到的α、β值……………..103
圖4-25、第二階段添加5 g/L麩胺酸的發酵動力曲線…………….106
圖4-26、第二階段添加5 g/L麩胺酸和葡萄糖的發酵動力曲線….106
圖4-27、不同供氧量對菌體形態影響的比較………………………110
圖4-28、通氣量為0.05 vvm的發酵動力曲線……………………...112
圖4-29、通氣量為0.1 vvm的發酵動力曲線……………………….112
圖4-30、通氣量為0.2 vvm的發酵動力曲線……………………….113
圖4-31、通氣量為0.5 vvm的發酵動力曲線……………………….113
圖4-32、不同通氣量下的菌體比生長速率和轉化率………………115
圖4-33、不同通氣量下的多醣轉化率………………………………116
圖4-34、通氣量為0.05 vvm的多醣分子量分布圖………………...117
圖4-35、通氣量為0.1 vvm的多醣分子量分布圖………………….117
圖4-36、通氣量為0.2 vvm的多醣分子量分布圖………………….118
圖4-37、通氣量為0.5 vvm的多醣分子量分布圖………………….118
圖4-38、兩階段不同供氧量的發酵動力曲線………………………119
圖4-39、通氣量為0.05 vvm添加5 g/L麩胺酸的發酵動力曲線…123
圖4-40、通氣量為0.1 vvm添加5 g/L麩胺酸的發酵動力曲線…...123
圖4-41、通氣量為0.05 vvm兩階段操作的發酵動力曲線………...126
參考文獻 參 考 文 獻
1. 卯曉嵐,“中國的食用和和藥用大型真菌”,微生物學通報,1989,216,290-297。
2. 蘇茂森、劉冠甫、張正芳、廖一久,“由Schizophyllum commune萃取之Beta-1,3-glucan應用於強化草蝦苗活力之研究”,水產研究,1993,3(2),125-132。
3. 張正芳、蘇茂森、陳宏遠、廖一久,“由Schizophyllum commune萃取之多醣類Beta-1,3-glucan與多聚磷酸態維生素C (polyphosphorylated L-ascorbic Acid)對強化草蝦抵抗弧菌與受傷組織復原能力之研究”,水產研究,1993,4(1),43-54。
4. 劉峻,“靈芝液體培養及多醣生成之研究”,私立東海大學化學工程系碩士論文,1997。
5. 水野卓、川合正允,“菇類的化學‧生化學”,賴慶亮譯,國立編譯館,1997。
6. 陳勁初、黃仕政,“菇菌類機能性食品之開發”,生物產業,2000,11(3),164-171。
7. 陳啟楨,“靈芝形態、菌種分離、人工栽培技術與菌種保存技術”,靈芝學術研究發展委員會-委員會成立文集,2000。
8. 李振綱、吳誌明、蔡有癸,“高密度微生物細胞醱酵培養”,化工技術,2001,163-175。
9. 楊芳鏘、楊明哲,“菌絲狀真菌之深層培養技術”,化工技術,2001,176-189。
10. 林秋烽,“味精過敏問題回答”,科學月刊,2001。
11. 陳勁初、呂鋒洲,“靈芝之王:台灣樟芝”,元氣齋出版社,2001。
12. 陳怡倩,“利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究”,國立中央大學化學工程系碩士論文,2001。
13. 王伯徹、黃仁彰,“靈芝與樟芝之研發與市場面面觀”,食品工業,2002,34(5),3-17。
14. 施佐非藍相關報告,日本科研製藥株式會社。
15. 網站,“味丹企業資訊站”,味丹企業股份有限公司網頁。
16. Audet, Julie.; Thibault, J.; LeDuy, A. : Polysaccharide Concentration and Molecular Weight Effects on the Oxygen Mass Transfer in a Reciprocating Plate Bioreactor. Biotechnology and Bioengineering. 1996, 52, 507-517.
17. Badino Jr., A. C.; Facciotti, M. C. R.; Schmidell, W. : Volumetric oxygen transfer coefficient (kLa) in batch cultivations involving non-Newtonian broths. Biochemical Engineering Journal. 2001, 8, 111-119.
18. Boa, J. M.; LeDuy, A. : Pullulan from Peat Hydrolyzate Fermentation Kinetics. Biotechnology and Bioengineering. 1987, 463-470.
19. Catley, B. J. : The Extracellular Polysaccharide, Pullulan, Produced by Aureobasidium Pullulans – A Relationship Between Elaboration Rate and Morphology. Journal of General Microbiology. 1980, 120, 265-268.
20. Dosoretz, G.; Chen, H. C.; Grethlein, E. : Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium. Applied Microbiology Biotechnology. 1990, 34, 131-137.
21. Ellison, J. The Brewer. 1973, 601-606.
22. Felse, P. A.; Panda, T. : Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors-the influence of agitator speed. Biochemical Engineering Journal. 2000, 4, 115-120.
23. Forage, R. G.; Harrison, D. E. F.; Pitt, D. E. : Effect of environment on microbial activity. Comprehensive Biotechnology. 1985, 1, 253-279.
24. Friebe, B.; Holldorf, A. W. : Control of Extracellular β-1,3-Glucanase Activity in a Basidiomycete Species. Journal of Bacteriology. 1975, 122, 818-825.
25. Fujimoto, S. ; Orita, K.; Kimura, T.; Kondo, T.; Taguchi, T.; Yoshida, K.; Ogawa, N.; Furue, H. : Clinical evaluation of SPG (schizophyllan) as a therapeutic adjuvant after surgery of gastric cancer-controlled study by an envelope method. Gan To Kagaku Ryoho. 1983, 10, 1135-1145.
26. Garcia-Ochoa, F.; Gomez-Castro, E.; Santos, V. E. : Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology. 2000, 27, 680-690.
27. Gibbs, P. A.; Seviour, R. J. : Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? Appl. Microbiol. Biotechnol. 1996, 46, 503-510.
28. Gibbs, P. A.; Seviour, R. J.; Schmid, F. : Growth of Filamentous Fungi in Submerged Culture: Problems and Possible Solutions. Critical Reviews in Biotechnology. 2000, 20, 17-48.
29. Gura, E.; Rau, U. : Comparison of agitators for the production of branched β-1,3-D-glucans by Schizophyllum commune. Journal of Biotechnology. 1993, 27, 193-201.
30. Hamazaki, Y.; Kuramoto, M.; Okamura, K.; Yajima, A.; Higashi-iwai, H.; Suzuki, M. : Studies on immunotherapy of uterine cervical cancer by administration of schizophyllan (SPG) . Nippon Sanka Fujinka Gakkai Zasshi. 1980, 32, 929-935.
31. Hanson, R. S.; Cox, D. P. : Effect of Different Nutritional Conditions on the Synthesis of Tricarboxylic Acid Cycle Enzymes. Journal of Bacteriology. 1967, 93, 1777-1787.
32. Hua, Q.; Shimizu, K. : Effect of dissolved oxygen concentration on the intracellular flux distribution for pyruvate fermentation. Journal of Biotechnology. 1999, 68, 135-147.
33. Jana, A. K.; Ghosh, P. : Xanthan biosynthesis in continuous: citric acid as an energy source. Journal of Fermentation and Bioengineering. 1995, 80(5), 485-491.
34. Jarman, T. R.; Pace, G. W. : Energy requirements for microbial exopolysaccharide synthesis. Archives of Microbiology. 1984, 137, 213-235.
35. Ju, L. K.; Ho, C. S.; Shanahan, J. F. : Effects of Carbon Dioxide on the Rheological Behavior and Oxygen Transfer in Submerged Penicillin Fermentations. Biotechnol. Bioeng. 1991, 38, 1223-1232.
36. Kang, A.; Wang, Y.; Harvey, L. M; McNeil B. : Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess Engineering. 2000, 23, 69-74.
37. Kennedy, J. F.; Jones, P.; Barker, S. A.; Banks, G. T. : Factors affecting microbial growth and polysaccharide production during the fermentation of Xanthomonas campestris cultures. Enzyme and Microbial Technology. 1982, 4, 39-43.
38. Kojima, T.; Tabata, K.; Itoh, W.; Yanaki, T. : Molecular weight dependence of the antitumor activity of schizophyllan. Agric. Biol. Chem. 1986, 50, 231-232.
39. Komatsu, N. ; Nagumo, N. ; Okubo, S. ; Koike, K. : Protective effect of schizophyllan on bacterial infections of mouse. Jan. J. Abtibiot. 1973, 26, 277-283.
40. Lazic, M. L. ; Veljkovic, V. B. ; Vucetic, J. I. ; Vrvic, M. M. : Effect of pH and aeration on dextran production by Leuconostoc mesenteroides. Enzyme and Microbial Technology. 1993, 15, 334-338.
41. Metz, B.; Kossen, N. W. F. : The growth of molds in the form of pellets:Literature review. Biotechnol. Bioeng. 1977, 19, 781-799.
42. ammad, F. H. A.; Badr-Eldin, S. M.; El-Tayeb, O. M.; Abdel-Rahman, O. A. : Polysaccharide production by Auerobasidium Pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass and Bioenergy. 1995, 8(2), 121-129.
43. Mulchandani, A.; Luong, J. H. T. : Batch kinetics of microbial polysaccharide biosynthesis. Biotechnology and Bioengineering. 1988, 32, 639-646.
44. Muller, R. J.; Rau, U.; Cordes, K.; Klein, J. : Process and molecular data of branched 1,3-β-D-glucans in comparison with Xanthan. Bioproc. Eng. 1990, 5, 89-93.
45. Munzberg, J.; Rau, U.; Wagner, F. : Investigations on the regioselective hydrolysis of a branched β-1,3-glucan. Carbohydrate Polymers. 1995, 27, 271-276.
46. Nienow A. W. : Agitators for mycelial fermentations. TIBTECH AUGUST. 1990, 8, 921-926.
47. Okamura, K.; Suzuki, M.; Chihara, T.; Fujwara, A.; Fukua, T.; Goto, S.; Ichinohe, K. : Clinical Evaluation of Schizophyllan Combined With Irradiation in Patients With Cervical Cancer. Cancer. 1986, 58, 865-872.
48. Olsvik, E. S.; Kristiansen, B. : Influence of Oxygen Tension, Biomass Concentration, and Specific Growth Rate on the Rheological Properties of a Filamentous Fermentation Broth. Biotechnology and Bioengineering. 1992, 40, 1293-1299.
49. Pace, G. W. : Rheology of Mycelial Fermentation Broth. Fungal Biotechnology. 1980, 95-110.
50. Peters, H. U.; Herbst, H.; Hesselink, P. G. M.; Lunsdort, H.; Schumpe, A.; Deckwer, W. D. : The influence of agitation rate on Xanthan production by Xanthomonas campestris. Biotechnology and Bioengineering. 1989, 34, 1393-1397.
51. Peters, H. U.; Suh, I. S.; Schumpe, A.; Deckwer, W. D. : The pyruvate content of xanthan polysaccharide produced under oxygen limitation. Biotechnology Letters. 1993, 15(6), 565-566.
52. Rau, U.; Brandt, C. : Oxygen controlled batch cultivations of Schizophyllum commune for enhanced production of branched β-1,3-glucans. Bioprocess Engineering. 1994,161-165.
53. Rau, U.; Gura, E.; Olszewski, E.; Wagner, F. : Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. Journal of Industrial Microbiology. 1992, 9, 19-26.
54. Serrano-Carreon, L.; Corona, R. M.; Sanchez, A.; Galindo, E. : Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing. Process Biochemistry. 1998, 33, 133-146.
55. Shu, C. H.; Chen, Y. C.; Hsu, Y. C. : Effects of Citric Acid on Cell Growth and Schizophyllan in the Submerged Culture of Schizophyllum commune. J. Chin. Inst. Chem. Engrs. 2002, 33, 315-320.
56. Silva, S. S.; Roberto, I. C.; Felipe M. G. A.; Mancilha, I. M. : Batch fermentation of xylose for xylitol production in stirred tank bioreactor. Process Biochemistry. 1996, 31(6), 549-553.
57. Smith, M. D.; Ho, C. S. : The Effect of Dissolved Carbon Dioxide on Penicillin production: Mycelial Morphology. J. Biotechnol. 1985, 2, 347-363.
58. Sonnleitner, B. : Dynamic adaptation of microbes. Journal of Biotechnology. 1998,65,47-60.
59. Stasinopoulos, S. J.; Seviour, R. J. : Expolysaccharide production by Acremonium persicinum in stirred-tank and air-lift fermentors. Applied Microbiology Biotechnology. 1992, 36, 465-468.
60. Steiner, W.; Lafferty, R. M. : Studies on a Wild Strain of Schizophyllum commune: Cellulase and Xylanase Production and Formation of the Extracellular Polysaccharide Schizophyllan. Biotechnology and Bioengineering. 1987, 30, 169-178.
61. Taurhesia, S.; McNeil, B. : Physicochemical factors affecting the formation of the biological response modifier Scleroglucan. Journal of Chemical Technology and Biotechnology. 1994, 59, 157-163.
62. Trilsbach, G. F.; Hancher, K.; Sahen, H. : Xanthan formation by Xanthomonas campestris under culture conditions. Eur. Congr. Biotechnol. 1984, 2, 65-70.
63. Tseng, T.C. ; Shiao, M.S., ; Shieh,Y.S. ; Hao, Y.Y. : Study on Ganoderma lucidum 1. Liquid Culture and Chemical Composition of Mycelium. Botanical Bulletin of Academia Sinica. 1984, 25,149-157.
64. Wang, Y.; McNeil, B. : Dissolved oxygen and the scleroglucan fermentation process. Biotechnology Letters. 1995, 17 , 257-262.
65. Wang, Y.; McNeil, B. : Production of the Fungal Exopolysaccharide Scleroglucan by Cultivation of Sclerotium glucanicum in an Airlift Reactor with an External Loop. J. Chem. Tech. Biotechnol. 1995, 63, 215-222.
66. Wang, Y.; McNeil, B. : Scleroglucan. Critical Reviews in Biotechnology. 1996, 16(3), 185-215.
67. Wecker, A.; Onken, U. : Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnology Letters. 1991, 13(3), 155-160.
68. Wessels, J. G. H. ; Sietsma, J. H. : Wall structure and growth in Schizophyllum commune. Chemical structure of the hyphal wall.
69. Wittler, R.; Baumgartl, H.; Lübbers, D. W.; Schügerl, K. : Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnology and Bioengineering. 1986, 1024-1036.
70. Yanaki, T.; Ito, W.; Tabata, K.; Kojima, T.; Norisuye, T.; Takano, N.; Fujita, H. Biophys. Chem. 1983, 17, 337-342.
71. Yang, F. C.; Liau, C. B. : The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochemistry. 1998, 33, 547-553.
72. Yadomae, T.; Ohno, N. Rec. Res. Devel. Chem. Pharm. Sci. 1996, 1, 23-33.
73. Yoshioka, Y.; Uehara, N.; Saito, H. : Conformation-Dependent Change in Antitumor-Activity of Linear and Branched (1-)3)-Beta-D-Glucans on the Basis of Conformational Elucidation by C-13 Nuclear-Magnetic-Resonance Spectroscopy. Chemical & Pharmaceutical Bulletin. 1992, 40, 1221-1226.
74. Young, S. H.; Jacobs, R. R. : Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydrate Research. 1998, 310, 91-99.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2002-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明