博碩士論文 89322066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.118.30.253
姓名 林昌源(Chang-Yuan Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 集集地震液化土之穩態強度
(The steady-state strength of soils after liquefaction during Chi-Chi earthquake.)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 現地土壤之液化強度與震陷特性
★ 地震規模修正因子之探討★ 鯉魚潭水庫大壩受震反應分析
★ 全機率土壤液化評估法之研究★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 集集地震中因土壤液化所造成之地盤沉陷、側向流動處處可見,例如:霧峰鄉乾溪河岸太子城堡社區因地盤流動而嚴重滑移及傾斜。土壤液化後所產生地盤變位是地震災害中最常見也最具破壞性之地變型態,地盤液化後所產生的永久變位,受液化土層殘餘(臨界)強度所影響,因此,有必要瞭解土壤液化後產生流動時的殘餘強度,進而利用Newmark剛性塊滑體模式推估所產生的水平地盤永久變位。
本研究探討沉泥質砂與煤灰於壓密、受剪過程中的力學行為,並建立台灣地區液化層的SPT-N值與不排水臨界強度比之關係,期望能夠對地震所造成之液化行為更瞭解,進而利用於災害防治與工程設計上。土壤的不排水臨界強度為液化後穩定分析的主要參數,臨界強度可經由液化案例反算求得,但反算之臨界強度因假設液化後產生流動時可能發生排水的行為,所以強度較高。因此,使用實驗室不排水試驗推估臨界強度,在液化的穩定性分析上較為保守。
摘要(英) Chi-Chi earthquake was intensity led to severe damage due to soil liquefaction in Wufeng, an area beside the western foothills of the island. The post-liquefaction shear strength of sands, called the undrained critical strength. The stability of the original slope configuration at the instant of liquefaction is determined by the undrained critical strength of liquefied sand. The results from an experimental study on silty sands are presented and evaluated in view of the framework of critical-state or steady-state soil mechanics. Strain-controlled, consolidated-undrained triaxial compression tests were performed on silty sands and coal ashes on reconstituted soil samples.
Silty sands are the most common type of soil involved in both static and earthquake-induced liquefaction. This conclusion is based upon an extensive review of the literature. For seismic stability analysis of an existing slope ,drainage of the slide mass during post-liquefaction flow cannot be assumed .Therefore, a value of undrained critical strength (Su) corresponding to constant volume or an undrained condition and the original slope geometry must be used in stability analysis. A technique for estimating undrained critical strength ratio using (N1)60-CS was sought from undrained laboratory test results. Newmark’s rigid block sliding model is used to estimate the permanent horizontal displacement with the steady state strength parameter obtained from laboratory.
關鍵字(中) ★ 不排水臨界強度
★ 穩態強度
★ 地盤永久變位
★ 三軸壓密不排水試驗
關鍵字(英) ★ steady state strength
★ permanent horizontal displacement
★ consolidated-undrained triaxial compression test
★ undrained critical strength
論文目次 目錄
內容 頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 ⅠⅤ
圖目錄 ⅤⅡ
表目錄 ⅩⅡ
符號說明 ⅩⅢ
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 沉泥質砂的液化與穩態觀念 4
2.1.1 前言 4
2.1.2 臨界狀態的定義 4
2.1.3 穩定狀態與砂的行為 6
2.1.4 實驗方法(Lade and Yamamuro,1998) 8
2.1.5 沉泥質砂的相反土壤行為 9
2.1.6 不同圍壓範圍之不排水行為 11
2.1.7 穩定狀態線 13
2.1.8 加載方式與應變率的影響 16
2.1.9 沉泥質砂產生相反行為的原因 18
2.2 利用液化砂的不排水剪力強度進行穩定分析 20
2.2.1 前言 20
2.2.2 由室內實驗與現地孔隙比推估臨界強度 21
2.2.3 由液化案例與標準貫入阻抗推估臨界強度 23
2.2.4 以強度比的型式表示不排水臨界強度 25
2.2.5 比較反算臨界強度比與降伏強度比 26
2.2.6 推算不排水臨界強度的新研究 27
第三章 室內實驗方法 50
3.1 試驗目的 50
3.2 試驗內容 50
3.3 試驗方法 52
3.4 試驗儀器與相關設備 52
3.4.1 實驗室三軸壓縮試驗系統 53
3.5 試驗土樣與試體準備方法 55
3.6 試驗步驟 56
第四章 試驗結果與分析 68
4.1 靜態三軸試驗之結果與分析 68
4.1.1 相對密度及有效圍壓對土壤不排水行為之影響 69
4.1.2 穩定狀態線 74
4.1.3 利用動態三軸試驗推估不排水臨界強度 78
4.2 不排水臨界強度與SPT-N值之關係 80
4.3 側向流動案例分析 81
4.3.1 Newmark位移法 81
第五章 結論 126
5.1 結論 123
5.2 建議 125
參考文獻 126
參考文獻 參考文獻
1. 吳俊逸,「土壤液化引致地盤永久變位之研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
2. Timothy, D.S., and Gholamreza, M., “Undrained shear strength of liquefied sands for stability analysis,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 11, pp. 1127-1147 (1992).
3. Jerry, A.Y., and Poul, V.L., “Steady-state concepts and static liquefaction of silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 868-877 (1998).
4. Ishihara, K., Cubrinovski, M., and Nonaka, T., “Characterization of undrained behavior of soils in the reclaimed area of Kobe,” Special Issue of Soils and Foundations, pp. 33-46 (1998).
5. Konrad, J.M., and Watts, B.D., “Undrained shear strength for liquefaction flow failure analysis,” Canadian Geotechnical Journal, Vol. 32,No. 5, pp. 783-794 (1995).
6. Konrad, J.M., “Minimum undrained strength versus steady-state strength of sand,” Journal of Geotechnical Engineering, Vol. 116, No. 6, pp. 948-963 (1990).
7. Schanz, T., and Vermeer, P.A., “Angles of friction and dilatancy of sand,” Geotechnique, Vol. 46, No.1, pp. 145-151 (1996).
8. Abramson, L. W., Lee, T. S., Sharma, S. and Boyce, G. M., Slope Stability And Stabilization Methods, John Wiley & Sons, Inc., New York, pp. 337-415 (1996).
9. Thevanayagam, S., Ravishankar, K., and Mohan, S., “Effects of Fines on Monotonic Undrained Shear Strength of Sandy Soils,” Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 4,pp. 394-406(1997).
10. Lambe, T.W., and Whitman, R.V., Soil Mechanics, John Wiley, New York, pp.423-455. (1979).
11. Wride, C.E., Mcroberts, E.C., and Robertson, P.K., “Reconsideration of case histories for estimating undrained shear strength in sandy soils,” Canadian Geotechnical Journal, Vol. 36, No. 5,pp. 907-933(1999).
12. Naeini, S.A., Baziar, M.H., “Effect of sample preparation on steady state,” Geotechnical Special Publication, pp. 16-29 (2000).
13. Alarcon-Guzman, A., Leonards, G. A., and Chameau, J.L., “Undrained monotonic and cyclic strength of sands,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 6, pp. 1089-1109 (1988).
14. Hryciw, R.D., Vitton, S., and Thomann, T.G., “Liquefaction and flow failure during seismic exploration,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 12, pp. 1881-1899 (1990).
15. Kramer, S.L., and Seed, H.B., “Initiation of soil liquefaction under static loading conditions,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 412-430 (1988).
16. Liao, S.C., and Whitman, R.V., “Overburden correction factors for SPT in sand,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 3, pp. 373-377 (1985).
17. Been, K., Jefferies, M..G., and Hachey, J., “The critical state of sands,” Geotechnique, Vol. 41, No. 3, pp. 365-381 (1991).
18. Yoshimine, M., Robertson, P.K., and Wride, C.E., “Undrained shear strength of clean sands to trigger flow liquefaction,” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 891-906 (1999).
19. Lehane, B.M., and Jardine, R.J., “Residual strength characteristics of Bothkennar clay,” Geotechnique, Vol. 42, No. 2, pp. 363-367 (1992).
20. Yasuda, S., Ishihara, K., Harada, K. and Shinkawa, N., “Effect of soil improvement on ground subsidence due to liquefaction,” Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake, pp. 99-107 (1996).
21. Been, K., and Jefferies, M.G., “State parameter for sands,” Geotechnique, Vol. 35, No. 2, pp. 99-112 (1985).
22. Sladen, J.A., and Oswell, J.M., “Behavior of very loose sand in the triaxial compression test,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 162-163 (1990).
23. Zhang, H., and Garga, V.K., “Quasi-steady state: A real behavior,” Canadian Geotechnical Journal, Vol. 34, No. 5, pp. 749-761 (1997).
24. Ishihara, K., Yasuda, S. and Yoshida, Y., “Liquefaction-induced flow failure of embankments and residual strength of silty sands,” Soils and Fooundations, Vol. 30, No. 3, pp. 69-80 (1990).
25. Schoenemann, M.R., and Pyles, M.R., “Statistical description of triaxial shear test results,” Geotechnical Testing journal, Vol. 13, No. 1, pp. 58-62 (1990).
26. Cubrinovski, M., and Ishihara, K., “Modelling of sand behavior based on state concept,” Soils and Foundations, Vol. 38, No. 3, pp. 115-126 (1998).
27. Yamamuro, J.A., and Lade, P.V., “Effects of strain rate on instability of granular soils,” Geotechnical Testing journal, Vol. 16, No. 3, pp. 304-313 (1993).
28. Lade, P.V., “Static instability and liquefaction of loose fine sandy slopes,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 1, pp. 51-71 (1992).
29. Zlatovic, S., and Ishihara, K., “Normalized behavior of very loose non-plastic soils: effects of fabric,” Soils and Foundations, Vol. 37, No. 4, pp. 47-56 (1997).
30. Kramer, S.L., and Seed, H.B., “Initiation of soil liquefaction under static loading conditions,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 412-430 (1988).
31. Bolton, M.D., “The strength and dilatancy of sand,” Geotechnique, Vol. 36, No. 1, pp. 65-78 (1986).
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明