博碩士論文 89322068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.191.215.117
姓名 杜東岳(Tung-Yueh Tu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 施工地盤振動特性與數值模擬
(Ground Vibration Characteristics Due to Construction - Field Measurement and Numerical Simulation)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣地區地狹人稠,工程建設高度發展,因此經常發生施工振動致使居民生理和心理上的不適應,甚或影響周遭園區廠房的機械設備與精密儀器正常運轉及使用,更嚴重者導致鄰近結構物損壞之情況。近年來在都會區人口密集成長、交通道路或地表與地下捷運之擴充興建、以及老舊建物都市更新計畫等工程,可預期會有更多現地施工場址毗鄰住宅建築物及居民,因此在環境振動問題上會出現更多爭議及困擾,對於容許之地表振動的要求與限制愈趨嚴格下,設法改善地盤環境振動問題,早期發展相關阻隔措施以減低振動影響,是目前所關心之研究課題。
本研究首先蒐集整理國內外現有對人、精密機械與結構物之振動公害管制準則進行比較分析。針對不同施工場址進行現地振動量測,包括動力夯實、打設PC樁、鋼板樁、H型鋼樁、礫石樁與隧道開炸等施工,以及振動機具敲擊混凝土地面所造成之地盤振動衰減特性,進行振動數據資料之整理與分析。同時在現地施工場址進行隔減振試驗,以評估其減振成效。也於建築結構物不同樓層處裝設振動感應器,以量測結構物本身受到不同類型施工振動影響時之振波傳遞反應。分析方法採用地盤振動衰減率、傅氏譜及反應譜等方法,亦利用新近發展的希爾伯特-黃轉換之三維(能量-頻率-時間)頻譜分析法,來探討施工振動能量於時間域及頻率域上之完整分佈狀況。並對相關振動管制準則與實際振動量測案例進行檢核與驗証,且建議較具工程實用性之施工安全距離及設計反應譜,供各界參考使用。
最後以數值模擬分析動力夯實與打設PC樁施工之暫態波地盤振動模式,並與現地實測值比較討論,且探討淺層槽溝之效用,分析與建立施工引致地盤振動量之預測模式。主要使用ABAQUS有限元素分析軟體,經由適當地選擇振源模式、邊界條件、網格建構、材料參數與土壤阻尼之模式,則可相當程度地反應現地施工之地盤振動行為。
摘要(英) Taiwan is heavily populated in some restricted area. Engineering civil structures are highly developed in this country. Construction activities are often close to the surrounding living and working environments. Ground vibrations due to construction often caused residents uncomfortable or the precision machinery operation abnormal or, more seriously, the adjacent structures damaged.
First, the various worldwide vibration criteria was collected, compared and analyzed. Then, this investigation performs a series of field measurements of ground vibrations due to various constructions, including dynamic compaction, PC pile driving, vibratory sheet-piling, H steel piling, gravel column piling, tunnel blasting and vibrating machine striking concrete pavement. The triaxial velocity sensors were also installed on the different floors of various structures which located in different distances from the construction sites. The measured vibration data was used to investigate the vibration characteristics of ground and structures. The characteristics include the distance attenuation relation, Fourier and response spectra of vibration record, predominant frequencies of different structures, and the vibration propagation effect from the ground through the building structures. A newly developed method called Hilbert-Huang Transform (HHT) was also used to analyze the three dimensional relation of amplitude-frequency-time for vibration signals. The energy distribution characteristics of construction vibrations in frequency and time domains have been surveyed and discussed in detail.
An empirical method for evaluating the safe construction distance to adjacent building structures was presented based on the attenuation relation and the proposed building vibration criterion. Vibration response spectra were also suggested for use with the spectral analysis method to determine more accurately the safe construction distance. The study also discussed the isolation and barrier effects of the trench and sheet pile on the vibration propagation by the measured data.
Finally, based on the numerical simulation using ABAQUS software (finite element analysis program) and choosing appropriate vibration source, boundary conditions, material properties of hammer, piles and soil, the transient behaviors of ground vibrations induced by dynamic compaction and pile driving in situ are quite reasonably displayed.
關鍵字(中) ★ 頻譜分析
★ 數值模擬
★ 施工振動
★ 現地量測
★ 衰減
★ 振波傳遞
關鍵字(英) ★ field measurement
★ wave propagation
★ construction vibrations
★ numerical simulation
★ spectral analysis
★ attenuation
論文目次 第一章 緒 論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 研究方法與流程 2
1.4 研究內容 3
第二章 環境振動與法規之回顧 6
2.1 施工振動 6
2.1.1 動力夯實 7
2.1.2 各類型動態打樁 8
2.1.3 隧道機械式開挖 15
2.1.4 隧道開炸振動 16
2.2 列車振動 18
2.2.1 車輛軌道系統特性 19
2.2.2 行車速度之影響 19
2.2.3 支撐結構體影響振動之特性 20
2.2.4 地盤振動衰減特性 20
2.3 振動管制規範 21
2.3.1 引言 21
2.3.2 對建築結構物之影響 21
2.3.2.1 Langefors準則 23
2.3.2.2 德國標準DIN 4150 (1986) 24
2.3.2.3 瑞士標準 (1978) 24
2.3.2.4 USBM準則 25
2.3.2.5 中國大陸國家標準 25
2.3.2.6 瑞典標準 (Swedish Standard, SS 460 48 66) 25
2.3.2.7 日本相關振動管制標準 26
2.3.2.8 其他國外相關管制指標之準則 28
2.3.2.9 國內黃俊鴻建議之振動管制標準 29
2.3.2.10 小結 31
2.3.3 對人體之感受 32
2.3.3.1 Reiher與Meiser準則 32
2.3.3.2 石本與大塚之研究 33
2.3.3.3 日本三輪氏之研究 33
2.3.3.4 德國Dieckmann之感覺度與K值 34
2.3.3.5 振動對睡眠的影響 34
2.3.3.6 人體對振動感覺界限之比較 35
2.3.3.7 日本環境廳之建議 35
2.3.3.8 國際標準組織 ISO 2631 35
2.3.4 對機械設備或精密儀器之影響 36
2.3.4.1 對機械設備的影響 36
2.3.4.2 對精密儀器操作的影響 37
第三章 波傳衰減理論與頻譜分析方法 70
3.1 彈性波傳基本理論 70
3.1.1 振波之形式 70
3.1.2 波傳之折射與反射 73
3.2 地盤振動量之衰減關係 74
3.2.1 幾何衰減效應 74
3.2.2 材料阻尼效應 75
3.2.3 施工振動能量衰減之比較 76
3.3 振動衰減經驗公式 78
3.3.1 一般施工振動評估模式 78
3.3.2 開炸振動評估模式 81
3.3.2.1 日本經驗公式 82
3.3.2.2 美國USBM經驗公式 82
3.3.2.3 中國大陸經驗公式 83
3.3.2.4 瑞典Langefors經驗式 83
3.3.3 列車振動預測模式 83
3.3.4 其他振動衰減評估模式 85
3.4 質點振動特性 86
3.5 頻譜分析理論 91
3.5.1 傅氏頻譜 91
3.5.2 1/3倍頻頻帶頻譜 92
3.5.3 希爾伯特-黃轉換理論 94
3.5.3.1 即時頻率(Instantaneous Frequency) 95
3.5.3.2 內建模態函數(Intrinsic Mode Functions, IMF) 96
3.5.3.3 經驗模態分解法(The Empirical Mode, EMD) 97
3.5.3.4 希爾伯特頻譜(Hilbert Spectrum) 100
3.5.4 反應譜 101
3.6 試驗設備與量測設置方法 103
3.6.1 振動試驗設備 103
3.6.2 振動感應器設置之影響 104
3.6.3 現地振動量測事項 106
3.7 資料處理與分析流程 108
第四章 各類施工引致地盤振動之分析 129
4.1 前言 129
4.2 施工場址概況與振動量測規劃 129
4.2.1 動力夯實施工 129
4.2.2 打設PC樁施工 130
4.2.3 礫石樁施工 131
4.2.4 鋼板樁施工 132
4.2.5 H型鋼樁施工 133
4.2.6 施工機具敲擊地面 134
4.2.7 隧道開炸施工 135
4.3 動力夯實施工之量測結果分析 137
4.3.1 地盤之典型振動波形 137
4.3.2 地盤之振動頻譜分析比較 138
4.3.3 PGV與PGA隨距離之衰減 139
4.3.4 不同打擊能量之影響 139
4.4 打設PC樁施工之量測結果分析 139
4.4.1 不同方向與距離之波形 139
4.4.2 不同方向與距離之頻譜分析比較 140
4.4.3 PGV與PGA隨距離之衰減 141
4.4.4 打樁能量之影響 141
4.4.5 PGV隨深度之變化關係 142
4.5 礫石樁施工之量測結果分析 143
4.5.1 典型之振動波形 143
4.5.2 振動記錄之頻譜分析 143
4.5.3 地表振動峰值隨距離與深度之變化關係 145
4.6 鋼板樁施工之量測結果分析 145
4.6.1 覆土層之振動量測分析 145
4.6.2 礫石層之振動量測分析 146
4.6.3 振動記錄之反應譜分析 148
4.6.4 地表振動峰值隨距離與深度之變化關係 148
4.7 H型鋼樁施工之量測結果分析 149
4.7.1 典型之振動波形 149
4.7.2 振動記錄之頻譜分析 149
4.7.3 地表振動峰值隨距離與深度之變化關係 150
4.8 施工機具敲擊地面 151
4.8.1 典型之振動波形 151
4.8.2 振動記錄之頻譜分析 151
4.8.3 PGV與PGA隨距離之衰減 152
4.9 隧道開炸施工之量測結果分析 153
4.9.1 地盤上之振動量測分析 153
4.9.2 土碴堆之振動量測分析 154
4.9.3 邊坡上之振動量測分析 155
4.9.4 地層之炸振波傳遞特性 156
4.9.5 振動量衰減經驗公式 157
4.9.6 地盤振動之反應譜分析 159
4.10 各類施工振動特性之比較 159
4.10.1 典型振動波形 159
4.10.2 傅氏頻譜分析 160
4.10.3 1/3倍頻RMS速度頻譜分析 160
4.10.4 振幅隨距離與深度之變化關係 161
4.10.5 施工安全距離 162
4.10.6 反應譜分析 163
第五章 結構物受振波傳遞之案例分析 208
5.1 前言 208
5.2 結構物受振反應之基本理論分析 209
5.2.1自然頻率與阻尼之評估 209
5.2.2 共振與高頻振動模式 212
5.2.3 結構物受振效應之研究 213
5.3 西濱段快速道路施工之鄰房受振案例 217
5.3.1 振動量測規劃與配置 217
5.3.2 房屋受振反應之結果分析 218
5.4 洲美段快速道路施工之鄰房受振案例 219
5.4.1 振動量測規劃與配置 219
5.4.1.1 打設鋼板樁之量測配置 220
5.4.1.2 投擲鋼板塊之量測配置 220
5.4.1.3 振動機具強制敲地之量測配置 221
5.4.2 打設鋼板樁之房屋振動特性 221
5.4.3 投擲鋼板塊之房屋振動特性 223
5.4.4 振動機具敲擊地面之房屋不同樓層振動特性 224
5.4.5 振動機具敲擊地面之房屋頂樓不同距離振動特性 225
5.4.6 建物之頻譜比分析 225
5.5 蘆洲機廠打樁之鄰近房屋受振案例 226
5.5.1 機廠之地形、地質與施工概況 226
5.5.2 振動量測規劃與配置 226
5.5.3 RC高樓建物受振反應之結果分析 228
5.5.4 鐵皮屋矮房受振反應之結果分析 230
5.6 快速道路後龍-汶水隧道段之構造物受振案例 231
5.6.1 房屋之振動量測規劃與配置 231
5.6.2 不同類型房屋受振反應之結果分析 232
5.7 小結 233
第六章 振動阻隔試驗與數值模擬分析 274
6.1 前言 274
6.2 振波之阻隔機制 274
6.2.1 隔減振設置之型式 275
6.2.2 槽溝阻隔之振波分配與效果評估 276
6.2.3 槽溝幾何尺寸之影響 278
6.2.4 雙土層之中空槽溝振動阻隔 280
6.3 地中隔減振措施研究之回顧 281
6.3.1 國內外隔減振模型與現地試驗之回顧 281
6.3.2 爆破或暫態波型式之地盤隔減振回顧 286
6.3.3 隔減振數值分析之基本回顧 289
6.3.4 日本地中隔減振試驗之研究案例 291
6.4 現地減振措施對施工振動之阻隔效應 303
6.4.1 淺層中空槽溝之振動阻隔效應 303
6.4.1.1動力夯實之隔振溝影響分析 303
6.4.1.2 打設PC樁之隔振溝影響分析 306
6.4.2 PC樁群之振動阻隔影響 311
6.4.3 鋼板樁之振動阻隔效果 313
6.4.4 小結 314
6.5 動力夯實引致地盤振動之數值模擬分析 316
6.5.1 分析模式 316
6.5.2 網格建構與邊界條件 317
6.5.3 材料參數與土壤阻尼之模式 318
6.5.4 介面模式 320
6.5.5 大地靜應力 321
6.5.6 落錘衝擊作用力之模擬 321
6.5.7 數值模擬分析結果 322
6.5.7.1 落錘位置之地盤反應 322
6.5.7.2 速度歷時反應之比較 322
6.5.7.3 傅氏頻譜之比較 323
6.5.7.4 1/3倍頻速度頻譜之比較 324
6.5.7.5 反應譜之比較 324
6.5.7.6 顆粒運動軌跡之比較 324
6.5.7.7 振動隨距離衰減之比較 325
6.5.7.8 有無槽溝配置之比較 325
6.6 打設PC樁引致地盤振動之數值模擬分析 326
6.6.1 分析模型及參數 326
6.6.2 數值模擬分析結果 327
6.6.2.1 速度歷時反應之比較 327
6.6.2.2 振動隨距離衰減之比較 327
6.6.2.3 有無槽溝配置之比較 328
第七章 結論與建議 380
7.1 結論 380
7.2 建議 382
參考文獻 384
參考文獻 [1] ABAQUS Version 6.4 Documentation, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, USA (2003).
[2] Adhikari, G.R., “Ground vibration and structure response due to rock bursts at Kolar Gold Fields, India,” Journal of Mines, Metals & Fuels, Vol. 5, No. 5, pp. 145-152 (2007).
[3] Adhikari, G.R., Singh, R.B., and Gupta, R.N., “Structural response to ground vibration due to blasting in opencast coal mines,” Journal of Mines Metals and Fuels, pp. 135-138 (1989).
[4] Adhikari, G.R., Venkatesh, H.S., Theresraj, A.I., Roy, S., Balachander, R., and Jain, N.K., “To study the role of blast design parameters on ground vibration and correlation of vibration level to blasting damage to surface structures (S&T),” NIRM Report No. RB0202, Karnataka, India (2005).
[5] Ahmad, S., and Al-Hussaini, T.M., “Simplified design for vibration screening by open and in-filled trenches,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 1, pp. 67-88 (1991).
[6] Ahmad, S., Al-Hussaini, T.M., and Fishman, K.L., “Investigation on active isolation of machine foundations by open trenches,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 6, pp. 454-461 (1996).
[7] Aimone-Martin, C.T., Martell, M.A., McKenna, L.M., Siskind, D.E., and Dowding, C.H., “Comparative study of structure response to coal mine blasting,” OSMRE Report No. CTO-12103, Pittsburgh, PA (2003).
[8] Al-Hussaini, T.M., and Ahmad, S., “Active isolation of machine foundations by in-filled trench barriers,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 4, pp. 288-294 (1996).
[9] Al-Hussaini, T.M., and Ahmad, S., “Design of wave barriers for reduction of horizontal ground vibration,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 4, pp. 616-636 (1991).
[10] Amick, H., Gendreau, M., and Gordon, C.G., “Facility vibration issues for nanotechnology research,” Proceedings of the 9th Symposium on Nano Device Technology (SNDT), Hsinchu, Taiwan, pp. 1-4 (2002).
[11] Amick, H., Gendreau, M., Busch, T., and Gordon, C., “Evolving criteria for research facilities: vibration,” Proceedings of SPIE Conference 5933: Buildings for Nanoscale Research and Beyond, San Diego, CA, pp. 16-28 (2005).
[12] Athanasopoulos, G.A., and Pelekis, P.C., “Ground vibrations from sheetpile driving in urban environment: measurements, analysis and effects on buildings and occupants,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 5, pp. 371-387 (2000).
[13] Attewell, P.B., Selby, A.R., and O'Donnell, L., “Estimation of ground vibration from driven piling based on statistical analyses of recorded data,” Geotechnical and Geological Engineering, Vol. 10, No. 1, pp. 41-59 (1992).
[14] Barkan, D.D., Dynamics of Bases and Foundations, McGraw-Hill, New York (1962).
[15] Baxter, R.L., and Bernhard, D.L., “Vibration tolerance for industry,” ASME Paper 67-PEM-14, Plant Engineering and Maintenance Conference, Detroit, Michigan (1967).
[16] Berzal, R.L., “Blasting vibration levels transmitted across fracture planes,” Mining Magazine, Vol. 135, No. 4, pp. 361-363 (1976).
[17] Beskos, D.E., Dasgupta, B., and Vardoulakis, I.G., “Vibration isolation of machine foundations,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp. 138-151 (1985).
[18] Beskos, D.E., Dasgupta, G., Vardoulakis, I.G., “Vibration isolation using open or in-filled trenches, part 1: 2D homogeneous soil,” Computational Mechanics, Vol. 1, No. 1, pp. 43-63 (1986a).
[19] Beskos, D.E., Leung, K.L., and Vardoulakis, I.G., “Vibration isolation of structures from surface waves in layered soil,” Recent Applications in Computational Mechanics: Proceedings of 2 Sessions at Structures Congress ’86, ASCE, New York, pp. 125-140 (1986b).
[20] Blair, D.P., “Some problems associated with standard charge weight vibration scaling laws,” Proceedings of the 3rd International Symposium on Fragmentation by Blasting, Brisbane, pp. 149-158 (1990).
[21] Blair, D.P., “The measurement, modelling and control of ground vibrations due to blasting,” Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting, Keystone, Colorado, pp. 88-101 (1987).
Blasting, Keystone, Colorado, pp. 88-101 (1987).
[22] Blais, F., “Frequency and energy considerations for construction vibrations,” M.S. thesis, Department of Civil Engineering, Northwestern University, Evanston, IL (1993).
[23] Bogunovic, D., Kecojevic, V., “Artificial screen for reducing seismic vibration generated by blasting,” Environmental Geology, Vol. 53, No. 3, pp. 517-525 (2007).
[24] Bornitz, G., “Uber die Ausbreitung der von Groszkolbenmaschinen erzeugten Bodenschwingungen in die Tiefe,” J. Springer, Berlin (1931).
[25] British Standards Institution, “Evaluation and measurement for vibration in buildings - Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings,” BS 7385-1: ISO 4866 (1990).
[26] British Standards Institution, “Noise and vibration control on construction and open sites - Part 4: Code of practice for noise and vibration control applicable to piling operations,” BS 5228-4 (1992).
[27] Çelebi, E., Fırat, S., Beyhan, G., Çankaya, I., Vural, I., and Kırtel, O., “Field experiments on wave propagation and vibration isolation by using wave barriers,” Soil Dynamics and Earthquake Engineering, Vol. 29, No. 5, pp. 824-833 (2009).
[28] Chen, S.G., Cai, J.G., Zhao, J., and Zhou, Y.X., “3DEC modeling of a small-scale field explosion test,” Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, Washington, pp. 571-576 (2000).
[29] Chen, Y.J., Shen, Y.J., Chen, K.Y., and Chang, S.M., “Some characteristics of ground vibration as induced by high-speed trains,” Geotechnical Earthquake Engineering and Soil Dynamics IV, ASCE, Geotechnical Special Publication No. 181, pp. 1-10 (2008).
[30] Clark, D., Larson, B., and Lande, G., “Vibration: its effect and measurement techniques at or near dwellings,” Proceedings of the 9th conference on Explosives and Blasting Technique, ISEE, Annual meeting, Dallas, Texas, pp. 27-62 (1983).
[31] Clough, G.W., and Chameau, J.L., “Measured effects of vibratory sheetpile driving,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. GT10, pp. 1081-1099 (1980).
[32] Comina, C., Foti, S., “Surface wave tests for vibration mitigation studies,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 10, pp. 1320-1324 (2007).
[33] Crockett, J.H.A., “Piling vibrations and structural fatigue,” Proc. Conf. on Recent Developments in the Design and Construction of Piles, ICE, London, pp. 305-320 (1979).
[34] Daemen, J.K., Barkley, R.C., Ghosh, A., Morlock, C.R., and Shoop, S.A., “Ground and air vibrations caused by surface blasting,” USBM Report, Washington, DC (1983).
[35] Dasgupta, G., Beskos, D.E., and Vardoulakis, I.G., “3-D analysis of vibration isolation of machine foundations,” Proceedings of the 10th International Conference on Boundary Element, Southampton, England, Vol. 4, pp. 59-73 (1988).
[36] Dasgupta, G., Beskos, D.E., and Vardoulakis, I.G., “3-D vibration isolation using open trenches,” Proceedings of the 4th International Symposium on Innovative Numerical Methods in Engineering, Atlanta, Georgia, pp. 385-392 (1986).
[37] Dawn, T.M., and Stanworth, C.G., “Ground vibrations from passing trains,” Journal of Sound and Vibration, Vol. 66, No. 3, pp. 355–362 (1979).
[38] Davies, M.C.R., “Dynamic soil structure interaction resulting from blast loading,” Proceedings of the International Conference on Centrifuge 94, Singapore, pp. 319-324 (1994).
[39] Davies, M.C.R., “Modelling of dynamic soil structure interaction resulting from impulsive surface loading,” Proceedings of the International Conference on Centrifuge 91, Colorado, pp. 487-493 (1991).
[40] Devine, J.F., Beck, R.H., Meyer, A.V.C., and Duvall, W.I., “Vibration levels transmitted across a presplit fracture plane,” USBM RI 6695, Washington, DC (1965).
[41] Dolling, H.J., “Schwingungsisolierung von Bauwerken durch tiefe auf geeignete Weise stabilisierte Schiltze,” VDI Berichte 88, 3741 (1965).
[42] Dowding, C.H., Atmatzidis, D.K., and Murray, P.D., “Dynamic properties of residential structures subjected to blasting vibrations,” Journal of the Structural Division, ASCE, Vol. 107, No. 7, pp. 1233-1249 (1981).
[43] Dowding, C.H., Blast Vibration Monitoring and Control, Prentice-Hall, Englewood Cliffs, NJ (1985).
[44] Dowding, C.H., Construction Vibrations, Prentice-Hall, Upper Saddle River, NJ (1996).
[45] Dowding, C.H., “Frequency based control of urban blasting,” Excavation and Support for the Urban Infrastructure, Geotechnical Special Publication No. 33, ASCE, pp. 181-121 (1992).
[46] Eitzenberger, A., “Train-induced vibrations in tunnels: a review,” Division of Mining and Geotechnical Engineering, LTU Report SE-971 87, Luleå, Sweden (2008).
[47] Emad, K., and Manolis, G.D., “Shallow trenches and propagation of surface waves,” Journal of Engineering Mechanics, ASCE, Vol. 111, No. 2, pp. 279-282 (1985).
[48] Erarslan, K., Uysal, Ö., Arpaz, E., and Cebi, M.A., “Barrier holes and trench application to reduce blast induced vibration in Seyitomer coal mine,” Environmental Geology, Vol. 54, No. 6, pp. 1325-1331 (2008).
[49] Ewing, W.M., Jardetzky, W.S., and Press, F., Elastic Wave in Layered Media, McGraw-Hill, New York (1957).
[50] Fang, H.Y., and Ellis, G.W., “Laboratory study of ground response to dynamic densification,” Fritz Engineering Laboratory Report No. 462.6, Lehigh University (1983).
[51] Ferahian, R.H., and Hurst, W.D., “Vibration and possible building damage due to operation of construction machinery,” Proceedings of the 1968 Public Works and Equipment Show, Miami Beach, FL, pp. 144-155 (1968).
[52] Flanagan, R.F., “Ground vibration from TBMs and shields,” Tunnels and Tunnelling, pp. 30-33 (1993).
[53] Fornaro, M., Patrucco, M., and Sambuelli, L., “Vibrations from explosives, high energy hydraulic hammers and TBMs; experience from Italian tunnels,” Gallerie E Grandi Opere Sotterranee, pp. 30-37 (1994).
[54] Forsblad, L., “Markskakningar och deras Skadeverkan, Inverkan av Vibrerande Jordpackningamaskiner,” Skadlig Inverkan av Vibrationer, Sympsium Anordnat av Svenska Geotekniska Foreningen, Rapporter 56, May (1974).
[55] Fourney, W.L., Dick, R.D., Fordyce, D.F., and Weaver, T.A., “Effects of open gaps on particle velocity measurements,” Rock Mechanics and Rock Engineering, Vol. 30, No. 2, pp. 95-111 (1997).
[56] FTA, “Transit noise and vibration impact assessment,” United States Department of Transportation, Report DOT-T-95-16, Washington, DC (1995).
[57] FTA, “Transit noise and vibration impact assessment,” United States Department of Transportation, Report No: FTA-VA-90-1003-06 (2006).
[58] Gad, E.F., Wilson, J.L., Moore, A.J., and Richards, A.B., “Effects of mine blasting on residential structures,” Journal of Performance of Constructed Facilities, ASCE, Vol. 19, No. 3, pp. 222-228 (2005).
[59] Gemant, A., and Jackson, W., “The measurement of internal friction in some solid dielectric materials,” Philosophical Magazine Series 7, Vol. 23, No. 157, pp. 960-983 (1937).
[60] German Standards Institute, “Structural vibration in buildings - Effect on structures,” DIN 4150-3 (1986).
[61] Glatt, J., Roboski, J., and Finno, R.J., “Sheet-pile induced vibrations at the Lurie excavation project,” Geotechnical Engineering for Transportation Projects, ASCE, Geotechnical Special Publication No. 126, pp. 2130-2138 (2004).
[62] Gordon, C.G., and Ungar, E.E., “Vibration criteria for microelectronics manufacturing equipment,” Proceedings of Inter-Noise 83, pp. 487-490 (1983).
[63] Gordon, C.G., “Generic criteria for vibration-sensitive equipment,” Proceedings of SPIE Conference on Vibration Control and Metrology, San Jose, California, pp. 71-85 (1991).
[64] Gupta, R.N., Ghose, A.K., Mozumdar, B.K., and Nabibullah, Md. “Design of blasting rounds with airdeck pre-splitting for dragline and shovel benches near populated areas - a case study,” International Symposium on explosives and blasting techniques, New Delhi, India, Part III 1-27 (1990).
[65] Gutowski, T.G., and Dym, C.L., “Propagation of ground vibration: a review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
[66] Gutowski, T.G., “Ground vibration from cut and cover tunnel construction,” Sound and vibration, Vol. 12, No. 4, pp. 16-21 (1978).
[67] Haupt, W.A., “Isolation of vibrations by concrete core walls,” Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 251-256 (1977).
[68] Haupt, W.A., “Model test on screening of surface waves,” Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Vol. 3, pp. 215-222 (1981).
[69] Haupt, W.A., “Numerical methods for the computation of steady state harmonic wave fields,” Proceedings of the International Symposium on Dynamical methods in soil and rock mechanics, Karlsriihe, Germany, Vol. 1, pp. 255-280 (1977).
[70] Haupt, W.A., “Surface waves in non-homogeneous half-space,” Proceedings of the Conference on Dynamical Methods in Soil and Rock Mechanics, Karlsruhe, Germany, Vol. 1, pp. 335-367 (1977).
[71] Haupt, W.A., “Wave propagation in the ground and isolation measures,” Proceedings of the 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. 2, St. Louis, Missouri, pp.985-1016 (1995).
[72] Heckman, W.S., and Hagerty, D.J., “Vibrations associated with pile driving,” Journal of the Construction Division, Vol. 104, No. 4, ASCE, pp. 385-394 (1978).
[73] Heuze, F.E., Walton, O.R., Maddix, D.M., Shaffer, R.J., and Butkovich, T.R., “Analysis of explosions in hard rocks: the power of discrete element modeling,” Comprehensive Rock Engineering, Vol. 2: Analysis and Design Methods, Pergamon Press, pp.387-413. (1993).
[74] Hiller, D.M., and Bowers, K.H., “Groundborne vibrations from mechanized tunneling works,” Proceedings of Tunnelling ’97, Institution of Mining and Metallurgy, London, pp. 721-735 (1997).
[75] Hiller, D.M., and Hope, V.S., “Groundborne vibration generated by mechanized construction activities,” Proceedings of the ICE - Geotechnical Engineering, Vol. 131, No. 4, pp. 223-232 (1998).
[76] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proceedings of the Royal Society, Series A 454, London, Britain, pp. 903-995 (1998).
[77] Institute of Environmental Sciences (IEST), Appendix C in Recommended Practice RP-012, “Considerations in Clean Room Design,” IES-RP-CC012.2, Rolling Meadows, IL (2005).
[78] International Organization for Standardization, “Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements,” ISO 2631-1 (1985).
[79] International Organization for Standardization, “Mechanical vibration and shock - Vibration of buildings - Guidelines for the measurement of vibrations and evaluation of their effects on buildings; Amendment 2,” ISO 4866 AMD 2 (1996).
[80] International Organization for Standardization, “Mechanical vibration and shock - Vibration of buildings - Guidelines for the measurement of vibrations and evaluation of their effects on buildings,” ISO 4866 (1990).
[81] ISEE, Field Practice Guidelines for Blasting Seismographs, International Society of Explosives Engineers, Cleveland, OH (2009).
[82] Itoh, K., Zeng, X., Koda, M., Murata, O., and Kusakabe, O., “Centrifuge simulation of wave propagation due to vertical vibration on shallow foundations and vibration attenuation countermeasures,” Journal of Vibration and Control, Vol. 11, No. 6, pp. 781-800 (2005).
[83] Jimeno, C.L., Jimeno, E.L., and Carcedo, F.J.A., Drilling and Blasting of Rocks, A.A. Balkema, Rotterdam (1995).
[84] Lacy, H.S., and Gould, J.P., “Settlement from pile driving in sands,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp.152-173 (1985).
[85] Lamb, H., “On the propagation of tremors over the surface of an elastic solid,” Philosophical Transactions of the Royal Society of London, Series A, Vol. 203, pp. 1-42 (1904).
[86] Langefors, U., and Kihlström, B., The Modern Technique of Rock Blasting, John Wiley & Sons, New York (1963).
[87] Leventhall, H.G., “Low-frequency traffic noise and vibrations,” Transportation Noise Reference Book, Chapter 12, Butterworth & Co. Ltd., London (1987).
[88] Liao, S., and Sangrey, D.A., “Use of piles as isolation barriers,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. 9, pp. 1139-1152 (1978).
[89] Linehan, P.W., and Hannen, W.R., “Vibration monitoring during the I-10 west Papago/Inner loop advance test pile program,” WJE Report 830535, WJE Engineers, Northbrook, IL (1984).
[90] Linehan, P.W., Longinow, A., and Dowding, C.H., “Pipeline response to pile driving and adjacent excavation,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 2, pp. 300-316 (1992).
[91] Love, A.E.H., Some Problems of Geodynamics, Cambridge University Press, London (1911).
[92] Lysmer, J., and Waas, G., “Shear waves in plane infinite structures,” Journal of the Engineering Mechanics Division, ASCE, Vol. 98, No. 1, pp. 85-105 (1972).
[93] Kattis, S.E., Polyzos, D., and Beskos, D.E., “Modelling of pile barriers by effective trenches and their screening effectiveness,” Soil Dynamics and Earthquake Engineering, Vol. 18, No. 1, pp. 1-10 (1999a).
[94] Kattis, S.E., Polyzos, D., and Beskos, D.E., “Vibration isolation by a row of piles using a 3-D frequency domain BEM,” International Journal for Numerical Methods in Engineering, Vol. 46, pp. 713–728 (1999b).
[95] Kelley, P.L., Dellorusso, S.J., and Russo, C.J., “Building response to adjacent excavation and construction,” Effects of Construction on Structures, ASCE, Geotechnical Special Publication No 84, pp. 80-97 (1998).
[96] Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
[97] Kim, D.S., and Lee, J.S., “Source and attenuation characteristics of various ground vibrations,” Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE, Geotechnical Special Publication No. 75, pp. 1507-1517 (1998).
[98] Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, NJ (1996).
[99] Krohn, C.E., “Geophone ground coupling,” Geophysics, Vol. 149, No. 6, pp. 722-731 (1984).
[100] Kruglov, N.V., “Turbomachine vibration standards,” Teploenerg, Vol. 8, No. 85 (1959).
[101] Kuhlemeyer, R.L., and Lysmer, J., “Finite element method accuracy for wave propagation problem,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM5, pp. 421-427 (1973).
[102] Kurzweil, L.G., “Ground-borne noise and vibration from underground rail systems,” Journal of Sound and Vibration, Vol. 66, No. 3, pp. 363–370 (1979).
[103] Kuzu, C., and Guclu, E., “The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds,” Tunnelling and Underground Space Technology, Vol. 24, No. 1, pp. 53-61 (2009).
[104] Kuzu, C., “The mitigation of the vibration effects caused by tunnel blasts in urban areas: a case study in Istanbul,” Environmental Geology, Vol. 54, No. 5, pp. 1075-1080 (2008).
[105] Mallard, D.J., and Bastow, P., “Some observations on the vibration caused by pile driving,” Proc. Conf. on Recent Developments in the Design and Construction of Piles, ICE, London, pp. 261-284 (1979).
[106] Massarsch, K.R., “Ground vibration isolation using gas cushions,” Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, MO, pp. 1461-1470 (1991).
[107] Massarsch, K.R., “Man-made vibrations and solutions,” Proceedings of the Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, pp. 1393-1405 (1993).
[108] Mayne, P.W., “Ground vibrations during dynamic compaction,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp. 247-265 (1985).
[109] May, T.W., and Bolt, B.A., “The effectiveness of trenches in reducing seismic motion,” Earthquake Engineering and Structural Dynamics, Vol. 10, No. 2, pp. 195-210 (1982).
[110] McNeill, R.L., Margason, B.E., and Babcock, F.M., “The role of soil dynamics in the design of stable test pads,” Proceedings of the Guidance and Control Conference, Minneapolis, Minnesota, pp. 366-375 (1965).
[111] Medearis, K., “Rational damage criteria for low-rise structures subjected to blasting ground motions,” Pit and Quarry, No. 5 (1978).
[112] Menard, L., and Broise, Y., “Theoretical and practical aspects of dynamic consolidation,” Geotechnique, Vol. 25, No. 1, pp. 3-18 (1975).
[113] Mencwango, S.M., “Finite pulse excitation models for blast excitation,” M.S. thesis, Department of Civil Engineering, Northwestern University, Evanston, IL. (1990).
[114] Miller, G.F., and Pursey, H., “On the partition of energy between elastic waves in a semi-infinite solid,” Proc. Roy. Soc. London. Ser. A, Vol. 233, No. 1192, pp. 55-69 (1955).
[115] Morhard, R.C., Explosives and Rock Blasting, Atlas Powder Co., Dallas (1987).
[116] Morii, T., “Development of Shinkansen vibration isolation techniques,” Permanent Way, Vol. 18, pp. 11-37 (1977).
[117] Murilloa, C., Thorela, L., and Caicedob, B. “Ground vibration isolation with geofoam barriers: Centrifuge modeling,” Geotextiles and Geomembranes, Vol. 27, No. 6, pp. 423-434 (2009).
[118] Naggar, M.H.E., and Chehab, A.G., “Vibration barriers for shock-producing equipment,” Canadian Geotechnical Journal, Vol. 42, No. 1, pp. 297-306 (2005).
[119] Nelson, P.P., O’Rourke T.D., Flanagan, R.F., Kulhawy, F.H., and Ingraffea, A.R., “Tunnel boring machine performance study,” USDOT Report No. UMTA-MA-06-0100-84-1, U.S. Department of Transportation, Washington, DC (1984).
[120] Neumeuer, H., “Untersuchungen uber die Abschirmung eiges bestehenden Gebaudes gegen Erschutterungen beim Bau and Betrieb einer U-Bahnstrecke,” Baumaschine and Bautechnik, Vol. 10, No. 1, pp. 23-29 (1963).
[121] New, B.M., “The effects of ground vibration during Bentonite shield tunneling at Warrington,” Department of Transport TTRL Report LR 860, Transport and Road Research Laboratory, Crowthorne, UK (1978).
[122] New, B.M., “Vibration caused by underground construction,” Proceedings of Tunnelling ’82 Conference, Institution of Mining and Metallurgy, London, pp. 217-229 (1982).
[123] Newmark, N.M., and Hall, W.J., Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, C.A. (1982).
[124] Nichols, H.R., Johnson, C.F, and Duvall, W.I. “Blasting vibration and their effects on structures,” USBM Bulletin 656, Washington, DC (1971).
[125] Oriard, L.L., Richardson, T.L., and Akins, K.P., “Observed high-rise building response to construction blast vibrations,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp. 203-228 (1985).
[126] Pal Roy, P., and Chakraborty, A.K., “Critical evaluation of ground vibrations and consequent structural damage under varying blast configurations,” Proceedings of the 1st World Conference on Explosives & Blasting Technique, Munich, Germany, pp. 71-78 (2000).
[127] Pal Roy, P., “Characteristics of ground vibrations and structural response to surface and underground blasting,” Geotechnical and Geological Engineering, Vol. 16, No. 2, pp. 151-166 (1998).
[128] Prakash, A.J., Pal Roy, P., and Misra, D.D., “Analysis of blast vibration characteristics across a trench and a pre-split plane,” Fragblast - International Journal for Blasting and Fragmentation, Vol. 8, No. 1, pp. 51-60 (2004).
[129] Ramshaw, C.L., Selby, A.R., and Bettess, P., “Computer ground waves due to piling,” Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE, Geotechnical Special Publication No. 75, Vol. 2, pp. 1484-1495 (1998).
[130] Rayleigh, L., “On waves propagating along the plane surface of an elastic solid,” Proceedings of the London Mathematical Society, Vol. s1-17, No.1 pp.4-11 (1885).
[131] Reiher, H., and Meister, F.J., “The effect of vibration on people,” Forschun; auf dem Gebiete des Ingenieurwesens, Vol. 2, No. 11, pp .381-386 (1931). English Translation: Report No. F-TS-616-RE, Headquarters Air Material Command, Wright Field, Ohio (1946).
[132] Remington, P.J., Kurtweil, L.G., and Tower, D.A., “Low-frequency noise and vibrations from trains,” Transportation noise reference book, Chapter 16, Butterworth & Co. Ltd., London (1987).
[133] Richart, D.W., “Dynamic effects of pile installations on adjacent structures,” NCHRP Synthesis Report 253, Washington, USA (1997).
[134] Richart, F.E., Hall, J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, NJ (1970).
[135] Rockhill, D.J., Bolton, M.D., and White, D.J., “Ground-borne vibrations due to press-in piling operations,” BGA International Conference on Foundation: Innovations, Observations, Design and Practice, Dundee, Scotland, pp. 743-755 (2003).
[136] Sarsby, R.W., “Ground vibrations from sheet-Piling operations,” Proceedings of the 1st International Symposium on Environmental Geotechnology, Allentown, PA, pp. 655-666 (1986).
[137] SEAOC Vision 2000 “Performance based seismic engineering of buildings,” Structural Engineers Association of California, Sacramento, California (1995).
[138] Segol, G., Abel, J.F., and Lee, P.C.Y, “Amplitude reduction of surface waves by trenches,” Journal of the Engineering Mechanics Division, Vol. 104, No. 3, pp. 621-641 (1978).
[139] Shrivastava, R.K., and Rao, N.S.V.K., “Response of soil media due to impulse loads and isolation using trenches,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 8, pp. 695-702 (2002).
[140] Siskind, D.E., and Stagg, M.S., “Blast vibration measurements near and on structure foundations,” USBM RI 8969, Minneapolis, MN (1985).
[141] Siskind, D.E., Stagg, M.S., Kopp, J.W., and Dowding, C.H., “Structure response and damage produced by ground vibration from surface mine blasting,” USBM RI 8507, Washington, DC (1980).
[142] Siskind, D.E., Vibrations from Blasting, International Society of Explosives Engineers (ISEE), Cleveland (2000).
[143] Singh, P.K., and Roy, M.P., “Damage to surface structures due to underground coal mine blasting: apprehension or real cause?,” Environmental Geology, Vol. 53, No. 6, pp. 1201-1211 (2008).
[144] Singh, P.K., and Vogt, W., “Ground vibration: prediction for safe and efficient blasting,” Erzmetall, Vol. 51, No. 10, pp. 677-684 (1998).
[145] Singh, P.K., Singh, R.B., and Singh, D.P., “A study on the effect of total charge versus charge per delay on ground vibration due to blasting,” FOSMIN ’98, India, pp 128-133 (1998).
[146] Skipp, B.O., and Buckley, J.S., “Ground vibration from Impact,” Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, Tokyo, pp. 397-400 (1977).
[147] Stagg, M.S., and Engler, A.J., “Measurement of blast-induced ground vibrations and seismograph calibration,” USBM RI 8506, Washington, DC (1980).
[148] Standards Association of Australia, ASCA23 (1967).
[149] Steffens, R.J., “Structural vibration and damage,” Building Research Establishment Report, London (1974).
[150] Steinberg, S.B., and Lukas, R.G., “Densifying a Landfill for Commercial Development,” International Conference on Case Histories in Geotechnical Engineering, University of Missouri-Rolla, Vol. 3, pp. 1195-1200 (1984).
[151] Svinkin, M.R., “Minimizing construction vibration effects,” Journal of Practice Periodical on Structural Design and Construction, ASCE, Vol. 5, No. 2, pp. 108-115 (2004).
[152] Svinkin, M.R., “Mitigation of soil movements from pile driving,” Journal of Practice Periodical on Structural Design and Construction, ASCE, Vol. 11, No. 2, pp. 80-85 (2006).
[153] Svinkin, M.R., “Overcoming soil uncertainty in prediction of construction and industrial vibrations,” Uncertainty in the Geologic Environment: from Theory to Practice, Geotechnical Special Publications No. 58, ASCE, Vol. 2, pp. 1178-1194 (1996).
[154] Svinkin, M.R., “Pile driving induced vibrations as a source of industrial seismology,” Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, The Hague, The Netherlands, pp. 167-174 (1992).
[155] Swedish Standard, “Vibration and shock-guidance levels for blasting-induced vibration in building,” SS 460 48 66, Stockholm, Sweden (1991).
[156] Swiss Association of Standardization, “Effects of vibration on construction,” Seefeldstrasse9, CH 8008, Zurich, Switzerland (1978).
[157] Takemiya, H., and Fujiwara, A., “Wave propagation/impediment in a soil stratum and wave impeding block (WIB) measured for SSI response reduction,” Soil Dynamics and Earthquake Engineering, Vol. 13, No. 1, pp. 49-61 (1994).
[158] Takemiya, H., “Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct,” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 1, pp. 69-87 (2004).
[159] Tanaka, T., Yoshizawa, S., Osawa, Y., and Morishita, T., “Period and damping of vibration in actual buildings during earthquake,” Bulletin of the Earthquake Research Institute, Vol. 47, pp. 1073-1092 (1969).
[160] Teichmann, G.A., and Westwater, R., “Blasting and associated vibrations,” Engineering, Vol. 183, pp. 460-465 (1957).
[161] Theissen, J.R., and Wood, W.C., “Vibration in structures adjacent to pile driving,” Dames and Moor Engineering Bulletin, No. 60, pp. 4-21 (1982).
[162] Ungar, E.E., and Gordon, C.G., “Vibration challenges in microelectronics manufacturing,” The Shock and Vibration Bulletin, Vol. 53, Pt. 1, pp. 51-58 (1983).
[163] Ungar, E.E., and White, R.W., “Footfall-induced vibrations of floors supporting sensitive equipment,” Sound and Vibration, Vol. 13, No. 10, pp. 10-13 (1979).
[164] Ungar, E.E., “Designing sensitive equipment and facilities,” Mechanical Engineering, Vol. 107, No. 12, pp. 47-51 (1985).
[165] Ungar, E.E., Sturz, D.H., and Amick, H., “Vibration control design of high technology facilities,” Sound and Vibration, Vol. 24, No. 7, pp. 20-27 (1990).
[166] Uysal, O., Arpaz, E., and Berber, M., “Studies on the effect of burden width on blast induced vibration in open pit mines,” Environmental Geology, Vol. 53, No. 3, pp. 643-650 (2007).
[167] Uysal, O., Erarslan, K., Cebi, M.A., and Akcakoca, H., “Effect of barrier holes on blast induced vibration,” International Journal of Rock Mechanics & Mining Sciences, Vol. 45, No. 5, pp. 712-719 (2008).
[168] Veletsos, S.A., and Kumar, A., “Steady-state and transient responses of linear structures,” Journal of Engineering Mechanics, ASCE, Vol. 109, No. 5, pp. 1215-1230 (1983).
[169] Venkatesh, H.S., Adhikari, G.R., Gupta, R.N., and Theresraj, A.I., “Study on the effect of total charge on ground vibrations,” NIRM Report RB9805, Karnataka, India (1999).
[170] Venkatesh, H.S., and Rao, R.V., “Reduction of blast induced ground vibrations with open trenches in surface Mines,” Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, pp. 4132-4139 (2008).
[171] Verhas, H.P., “Prediction of the propagation of train-induced ground vibration,” Journal of Sound and Vibration, Vol. 66, No. 3, pp. 371-376 (1979).
[172] Verlin Deutscher Ingenieure, “Beurteilung der Einwirkung Mechanischen Schwingungen and den Menschen,” VDI Standard 2056 (1964).
[173] Verspohl, J., “Vibration on buildings caused by tunneling,” Tunnels and Tunnelling, BAUMA Special Issue, pp. 81-85 (1995).
[174] Waas, G., (1972). “Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media,” Ph.D. thesis, University of California at Berkeley, Berkeley, Calif. (1972).
[175] Wang, J.G., Sun, W., and Anand, S., “Numerical investigation on active isolation of ground shock by soft porous layers,” Journal of Sound and Vibration, Vol. 321, No. 3-5, pp. 492-509 (2009).
[176] Wang, Z.L., Li, Y.C., and Wang, J.G., “Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering,” Geotextiles and Geomembranes, Vol. 24, No. 5, pp. 265-273 (2006).
[177] Watts, G.R., “Traffic induced vibrations in buildings,” Transport and Road Research Laboratory RR 246, Crowthorne, UK (1990).
[178] Wegel, R.L., and Walther, H., “Internal dissipation in solids for small cyclic strains,” Physics, Vol. 6, pp. 141-157 (1935).
[179] Whiffin, A.C., and Leonard, D.R., “A survey of traffic-induced vibrations,” Report LR 418, Transport and Road Research Laboratory, Crowthorne, UK (1971).
[180] White, C.F., “Instruments are affected by vibration environment,” Instrumentation and Control Systems, Vol. 33, pp. 1001-1004 (1960).
[181] White, D.J., Finlay, T., Bolton, M., and Bearss, G., “Press-in piling: ground vibration and noise during piling installation,” Deep Foundations 2002, ASCE, Geotechnical Special Publication No. 116, pp. 363-371 (2002).
[182] Wiss, J.F., “Construction vibration: state-of-the-art,” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2, pp. 167-181 (1981).
[183] Wiss, J.F., “Damage effects of pile driving vibration,” Highway Research Board Record, No. 155, pp. 14-20 (1967).
[184] Wood, J.H., “Earthquake response of a steel frame building,” Earthquake Engineering and Structural Dynamics, Vol. 4, No. 4, pp. 349-377 (1976).
[185] Woods, R.D., and Jedele, L.P., “Energy-attenuation from construction vibrations,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp. 229-246 (1985).
[186] Woods, R.D., and Larry, P.J., “Energy-attenuation relationships from construction vibrations,” Proceedings of ASCE Symposium on Vibration Problems in Geotechnical Engineering, Detroit, Michigan, pp. 229-246 (1985).
[187] Woods, R.D., Barnett, N.E. and Sagesser, R., “Holography - a new tool for soil dynamics,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. 11, pp. 1231-1247, (1974).
[188] Woods, R.D., “Screening of surface waves in soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979 (1968).
[189] Worsey, P., Gilner, S.G., Drechsler, T., Ecklecamp, R., and Inman, R., “Vibration control during the construction of an in-pit lime kiln,” Proceedings of the 22nd Annual Conference on Explosives and Blasting Technique, ISEE, Orlando, FL, Vol. 2, pp. 180-190 (1996).
[190] Yang, Y.B., and Hung, H.H., “A parametric study of wave barriers for reduction of train-induced vibration,” International Journal for Numerical Methods in Engineering, Vol. 40, No. 2, pp. 3729-3747 (1997).
[191] 日本土質工學會,軟弱地盤對策工法-調查‧設計から施工まで-,現場技術者のための土と基礎シリーズ16,第28-29頁 (1988)。
[192] 江島淳,地盤振動與對策,吉井書店,東京 (1979)。
[193] 雜喉謙,發破振動之周邊影響與對策,鹿島出版社,東京 (1984)。
[194] 吉岡修,「新幹線鐵道振動の發生・傳播モデルとその防振對策法への應用」,鐵道總研報告, 財團法人鐵道總合技術研究所,特30,267頁 (1999)。
日本建築中心,「幕牆抗震設計手冊」,東京 (1979)。
[195] 鹽田正純,「地盤內の振動傳搬特性(<小特集>建築分野における固体音制御への流れ)」,日本音響學會誌,第五十卷,第四期,第325-331頁 (1994)。
[196] 鹽田正純,公害振動的預測手冊,景上書局,日本 (1985)。
[197] 中野有朋,環境振動,技術書院,日本 (1996)。
[198] 長瀧慶明、橋詰尚慶,「地盤內の振動の傳搬特性とその對策」,土と基礎,第四十四卷,第九期,第5-8頁 (1996)。
[199] 鹽田正純,「環境振動の予測と低減」,日本音響學會誌,第六十卷,第九期,第549-554頁 (2004)。
[200] 吉岡修,「鐵道沿線之地盤振動」,鐵道總研報告,第十一卷,第一期,第17-26頁 (1997)。
[201] 蘆谷公稔,「振動遮斷工の防振效果の評價手法」,物理探查,第五十八卷,第四期,第351-362頁 (2005)。
[202] 竹宮宏和 (2008)。最新の地盤環境對策工法の事例 - WIB工法,地盤工學會講習會。取自:http://www.ed-techno.org/files/publication/wib-slides.pdf
[203] 長谷川則夫、島田亙、山內一秀、石川泰、松葉征洋、小野金廣、新川直利、森本明,「橫濱火力發電所建設工事における基礎地盤改良工事(その6):サンドコンパクションパイル打設時の振動および固化壁の振動低減效果」,日本建築學會大會學術講演梗概集,B,構造I,第1509-1510頁,東海 (1994)。
[204] 藤島泰輔、吉田隆治、森下真行、布引英夫、黑澤俊也,「現場振動實驗による地中防振壁の振動低減效果」,日本建築學會大會學術講演梗概集, D-1,環境工學1,第209-210頁,關東 (2006)。
[205] 日比野信一、島田文夫,「工事振動に對するソイルセメント柱列壁の防振效果確認試驗 (その1)現場計測」,第37回地盤工學研究發表會,第2391-2392頁,秋田 (2003)。
[206] 古賀勝喜、三浦哲彥、中村六史、西田耕一,「改良体壁による地盤振動遮斷效果の現場實驗」,土と基礎,第四十六卷,第十一期,第13-16頁 (1998)。
[207] 村山篤史、砂塚秀知, 「深層混合處理工法により築造された改良地盤の交通振動の低減效果について」,日本建築學會大會學術講演梗概集,B-1,構造I,第691-692頁,關東 (2001)。
[208] 近者淳史、佐藤秀人,「小規模建築物に關する基礎設計と深層混合處理工法による高架道路交通振動緩和の一事例(土の性質ほか,構造I)」,日本建築學會大會學術講演梗概集,B-1,構造I,第481-482頁,九州 (2007)。
[209] 內田季延、鹽田正純,「工場から發生する環境振動の予測と防止」,日本建築學會大會學術講演梗概集,D-1,環境工學1,第291-294頁,中國 (1999)。
[210] 早川清、可兒幸彥、松原範幸, 「PC壁体による地盤振動の輕減效果とその評價」,土木學會構造工學論文集 A,第四十五卷,第二期,第713-718頁 (1999)。
[211] 神田仁、石井啟稔、吉岡修、平川泰行、川村淳一,「起機實驗および數値解析によるPC柱列壁の防振性能」,物理探查,第五十八卷,第四期,第377-389頁 (2005)。
[212] 早川清、松井保,「EPSブロックを用いた交通振動の輕減對策」,土と基礎,第四十四卷,第九期,第24-26頁 (1996)。
[213] 鐵道總合技術研究院RTRI (2004)。EPSビーズ混合ソイルセメント壁による振動遮斷工。取自:http://www.rtri.or.jp/rd/openpublic/seika/2004/04/environment_07.html
[214] 神田政幸、村田修、伊藤和也、太田和善、日下部治,「發泡スチロールビーズとソイルセメントからなる交通振動低減工の開發」,土と基礎,第五十二卷,第四期,第23-25頁 (2004)。
[215] 松岡元、安藤友宏,「土のう積層体による地盤振動の發振側‧傳播經路‧受振側での低減法」,土木學會論文集C,第六十二卷, 第二期,第379-389頁 (2006)。
[216] 早川清、原文人、植野修昌、西村忠典、庄司正弘,「鋼矢板壁による地盤振動の遮斷效果と增幅現象の解明」,土木學會論文集 F,第六十二卷,第三期,第492-501頁 (2006)。
[217] 中谷郁夫、早川清、樫本孝彥、西村忠典,「スクラップタイヤを用いた地中振動遮斷壁の提案とその振動低減效果の評價」,土木學會論文集G,第六十四卷,第一期,第46-61頁 (2008)。
[218] 早川清、中谷郁夫、緒方廣泰、前育弘,「EPS合成遮斷壁による地盤振動遮斷效果とその評價法の提案」,土木學會論文集G,第六十三卷,第二期,第138-148頁 (2007)。
[219] 櫛原信二、大塚誠、深田久、早川清,「地盤環境振動對策へのハイブリッド振動遮斷壁の適用性に關する考察」,土木學會論文集G,第六十四卷,第三期,第276-288頁 (2008)。
[220] 竹宮宏和、西村昭彥、成瀨龍一郎、細谷多慶、橋本光則,「埋設波動遮斷ブロック(WIB)による新しい地盤振動對策工法の實驗的評價」,土と基礎,第四十四卷,第九期,第21-23頁 (1996)。
[221] 潘少昀、黃子明,「台塑麥寮機械廠動力壓密地盤改良」,地工技術,第51期,第35-50頁 (1995)。
[222] 李嶸泰,「動力壓密工法施工引致地表振動之阻隔」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)。
[223] 李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59頁 (1984)。
[224] 陳文雄,唐治平,周健捷,羅俊雄,陳慧慈,「高雄過港隧道連絡橋打樁安全監測研究」,榮民工程試驗管理處研究計畫 (1987)。
[225] 鐘毓東、李建中、張龍騰、何應璋,「大地工程檢測與品質管制實例探討」,第二屆工程地質技術應用研討會,工業技術研究院能源與資源研究所主辦,台北(1991)。
[226] 陳慧慈,「台中火力電廠打樁振動觀測」,國立中央大學土木工程學系研究報告,中壢 (1992)。
[227] 陳正興,「彰濱工業區開發工程八十四年度地質鑽探及試驗工作-打樁振動試驗總報告」,國立台灣大學土木工程研究所,台北 (1996)。
[228] 黃俊鴻、李建中、莊家瑄,「打樁振動對建築結構物影響之評估」,中國土木水利工程學刊,第十五卷,第四期,第631-641頁 (2003)。
[229] 倪勝火,鍾啟泰,莊明仁,「台南科學園區背景及施工引致振動之量測與分析」,中華民國第五屆結構工程研討會論文集,溪頭,第1-8頁 (2000)。
[230] 李全發,「打樁引致之地表振動與鄰房耐震診斷」,碩士論文,國立成功大學建築研究所,台南 (1993)。
[231] 洪顯宗,「都會區環境工法介紹─靜壓植樁施工」,捷運技術半年刊,第38期,第173-187頁 (2008)。
[232] 張瑞麟,「爆破工程之震動」,地工技術,第61期,第67-77頁 (1997)。
[233] 蔡益超,「岩石爆破工程技術之研究(二)」,財團法人台灣營建研究中心研究報告TR-705,臺北 (1983)。
[234] 吳俊傑,「新觀音隧道開炸案例探討」,隧道開炸技術暨諮詢系統研討會,臺北,第77-99頁 (1999)。
[235] 劉志學、王泰典、張世勳,「隧道開炸與地質關係探討」,隧道開炸技術暨諮詢系統研討會,臺北,第151-168頁 (1999)。
[236] 蔡益超、葉超雄、茅聲燾、景鴻鑫,「石門水庫增建排洪隧道工程岩層爆震波傳遞特性及附近現有結構物之動力特性測析」,國家地震工程研究中心,臺北 (1979)。
[237] 余明山,王鴻基,鍾毓東,「打樁振動影響評估及防治」,地工技術,第85期,第61-72頁 (2001)。
[238] 許茂雄,陳奕信,吳清楓,「從RC外牆壁磚震害試驗探討建築物結構功能設計標準」,中國土木水利工程學刊,第十三卷,第一期,第161-170頁 (2001)。
[239] 吳德倫,葉曉明,「工程爆破安全振動速度綜合研究」,岩石力學與工程學報,第16卷,第三期,第266-273頁 (1997)。
[240] 張順忠,「大地工程基礎施工與公害」,地工技術,第13期,第77-87頁 (1986)。
[241] 張志呈,定向斷裂控制爆破,重慶出版社,四川 (2000)。
[242] 沈怡君,顏彬任,倪勝火,「高速鐵路引致地盤振動之地工防治對策探討」,地工技術,第88期,第15-22頁 (2001)。
[243] 沈怡君,倪勝火,「高速鐵路振動量測技術探討」,中華技術,第81期,第132-139頁 (2009)。
[244] 陳誠源,「漫談捷運軌道噪音振動」,捷運技術半年刊,第39期,第31-52頁 (2008)。
[245] 行政院環保署,「環境振動量測與管制技術之建立」,報告編號:EPA-87-E3L1-03-03,台北 (1998)。
[246] 葉祥海、呂良正、楊永斌,「以微震量測探討鋼筋混凝土構造建築物之基本振動周期」,內政部建築研究所,台北 (2000)。
[247] 楊樹華,陳正興,黃富國,「動力打樁引致之地盤振動反應」,第七屆大地工程研討會,金山,第265-272頁 (1997)。
[248] 洪昌祺,「矩形槽溝對沉埋基礎振動阻隔效應之分析」,碩士論文,國立成功大學土木工程研究所,臺南 (1992)。
[249] 徐俊雄,「填充槽溝阻隔效應之實驗研究與分析」,碩士論文,國立成功大學土木工程研究所,臺南 (1993)。
[250] 蔡佩勳,「槽溝對方形振動基礎的震波阻隔效應之研究」,博士論文,國立成功大學土木工程研究所,臺南 (1996)。
[251] 吳瑞祥,「槽溝對表面波減振之實驗研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2000)。
[252] 林建儀,「振動衰減模式與振波阻隔效應之實驗研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2001)。
[253] 廖志祥,「土中障礙物對振波阻隔之試驗研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2002)。
[254] 陳憲儀,「含水膜包對振波阻隔效應之試驗研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2003)。
[255] 黃富雄,「原型填充槽溝對波傳阻隔效果之試驗研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2004)。
[256] 王韋樵,「南部科學園區填充槽溝減振效能之分析」,碩士論文,國立成功大學土木工程研究所,臺南 (2005)。
[257] 陳慧慈,「高速鐵路引致之地表振動與隔減振對策—子計畫I:高架式高速鐵路引致之地表振動及阻隔對策」,行政院國家科學委員會專題研究報告,NSC87-2218-E008-030 (1998)。
[258] 簡枝龍,「壕溝對降低地表水平剪力波有效性之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1986)。
[259] 劉彥宏,「環狀壕溝阻隔地表震動之有效性」,碩士論文,國立中央大學土木工程研究所,中壢 (1992)。
[260] 梁世忠,「落錘式地盤改良工法引致之地表振動與減振措施」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
[261] 吳基福,「阻隔振動措施之三維分析」,國立中央大學土木工程研究所,碩士論文,中壢 (1999)。
[262] 林豐洲,「打樁引致地表振動的數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
[263] 莊家瑄,「打樁引致地盤振動之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2010-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明