博碩士論文 89322079 詳細資訊


姓名 楊樹榮(Shu-Jung Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 路基土壤反覆載重下之回彈與塑性行為及模式建構
(The resilient and plastic behavior of subgrade soils under repeated loading and its model development.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
路基土壤受過大應力反覆加載作用下,塑性變形逐漸累積,終至面層產生過大的車轍變形。然而,至今仍缺乏一合理方式界定路基土壤臨界應力,及預測路基土壤於不同載重次數下之塑性變形。因此,本研究應用反覆載重三軸試驗,根據路基土壤於反覆載重下之回彈、塑性、遲滯及shakedown等行為加以界定路基土壤臨界應力,進而發展一多元迴歸塑性模式預測路基土壤塑性變形。此外,對於回彈模數行為預測,選擇常用之軸差應力模式及雙折線模式做一探討。
研究結果顯示,雙折線模式預測回彈模數行為較軸差應力模式為佳。而路基土壤破壞可由反覆載重下之消散能變化情形,及塑性應變發展型態加以判定,低於臨界應力水準時,路基土壤於反覆載重下之塑性行為係處於穩定累積狀態,且消散能持續遞減;而高於臨界應力水準時,塑性應變累積行為會呈現突然增大,有別於低應力水準下之行為,且消散能於載重若干次數後有復而升高之現象。
依shakedown觀點,路基土壤係由塑性潛變shakedown行為進入至增量崩潰階段,而臨界應力水準則存在於兩種行為之分野。研究結果發現,路基土壤臨界軸差應力隨含水量增加而下降;隨圍壓提高而上升。此外,所發展之多元迴歸塑性模式可有效地預測路基土壤於不同載重次數下之塑性應變。
摘要(英) ABSTRACT
The subgrade soil failures due to excessive permanent deformation produced by high stresses in the pavement. However, lack of reasonable mode distinguishes the critical stress in subgrade soil. This paper describes the shakedown behavior of cohesive subgrade soil under repeated loading. The main goal is to define the critical stress level of subgrade soil under repeated loading. According to the shakedown concept, this level is termed the shakedown limit, and it can be distinguish on bases of resilient, plastic, hysteretic, and shakedown behavior by repeated triaxial test. Besides, to select the deviatoric stress model and bilinear model predict the resilient modulus of subgrade soil.
The test results show the bilinear model is better than the deviatoric stress model. The determination of critical stress can rely on the behavior of soil under repeated loading, such as dissipated energy and the type of plastic strain accumulation. Below the critical stress, the plastic strain is steady to accumulate, and the dissipated energy is more and more small as the number of load cycles increase. As the stress level advancing above the critical stress, the plastic strain is suddenly increases, and the dissipated energy rises again after specific load applications. Besides, the method of description for plastic strain rate versus plastic strain also can effectively distinguish the shakedown behavior.
According to the shakedown concept, subgrade soil is from plastic creep shakedown to incremental collapse. The critical stress level is between two behaviors, and it decreases with increasing water content, increases with increasing confining pressure.
關鍵字(中) ★ 路基土壤
★ 反覆載重
★ 回彈模數
★ 塑性模式
關鍵字(英) ★ plastic model
★ shakedown
★ resilient modulus
★ repeated loading
★ subgrade soils
論文目次 目 錄
頁次
第一章 緒論 1
1.1研究動機與目的 1
1.2研究內容 2
1.3研究架構及流程 3
第二章 路基土壤回彈模數 5
2.1前言 5
2.2回彈模數試驗規範沿革 6
2.3 T 292-91回彈模數試驗程序內容 8
2.3.1回彈模數試驗之土壤分類 8
2.3.2儀器裝置構造 10
2.3.3試體製作方式 18
2.3.4回彈模數試驗程序 20
2.4回彈模數影響因子 24
2.4.1試體製作方式與含水量 24
2.4.2應力水準 28
2.4.3試驗程序 32
2.4.4應力加載次數 38
2.4.5量測元件位置 39
2.4.6系統誤差 40
2.5回彈模數試驗結果與討論 42
2.5.1土壤性質與試驗準備 42
2.5.2含水量變化對回彈模數之影響 46
2.5.3軸桿摩擦力對回彈模數之影響 48
2.6回彈模數組成模式 58
2.6.1 T 292-91所建議之回彈模數組成模式 58
2.6.2其他常見之回彈模數組成模式 59
2.6.3軸差應力模式與Thompson and Robnet之雙折線模式比較 65
第三章 路基土壤反覆載重下之塑性及回彈行為 71
3.1前言 71
3.2反覆載重下之臨界應力水準 71
3.3 shakedown 觀念 81
3.4路基土壤靜態三軸試驗 85
3.5路基土壤反覆載重試驗 88
3.6路基土壤反覆載重下之shakedown 行為 90
3.7路基土壤反覆載重下之塑性行為 100
3.7.1反覆載重下之塑性應變 100
3.7.2反覆載重下之塑性應變增加率 114
3.8路基土壤反覆載重下之回彈行為 125
3.8.1反覆載重下之回彈應變 125
3.8.2反覆載重下之回彈模數 130
第四章 路基土壤反覆載重下之塑性模式建構 140
4.1前言 140
4.2反覆載重下常用之塑性模式 141
4.2.1塑性應變與反覆載重次數間之關係模式 141
4.2.2簡化模式 144
4.3塑性模式參數決定 148
4.3.1εp(N) = I.NS模式 148
4.3.2εp(N) =εp(1) + S log N 模式 155
4.3.3εp(N) = BenXN S模式 155
4.4多元迴歸模式建構 157
4.4.1 Pearson相關分析 158
4.4.2多元迴歸塑性模式建構 161
4.4.3多元迴歸塑性模式驗證及應用 164
第五章 結論與建議 167
參考文獻 171
參考文獻 參考文獻
李崇正,「三軸試驗誤差結果與其修正方法」,中國土木水利工程學刊,第6卷,第1期,第119-127頁,(1994)。
金永斌、蕭達鴻、楊全成、郭呈彰,「路基土壤經穩定處理後工程特性之探討」,第八屆鋪面工程研討會論文集,第491-500頁,(1995)。
房性中,「路基土壤彈性模數值與CBR值柔性路面厚度設計方法之研究」,碩士論文,私立中原大學,中壢,(1987)。
房性中,「路基土壤回彈模數MR試驗與設計問題之探討」,土木工程技術,第八期,第95-118頁,(1997)。
林炳森、林商裕、楊麗文,「卵礫石層回彈模數特性之研究」,第十屆鋪面工程學術研討會,第669-678頁,(1999)。
林惠玲、陳正倉,統計學-方法與應用(下),雙葉書廊有限公司,二版,(2000)。
黃偉慶,「柔性路面厚度設計法評估」,鋪面管理維護系統研討會專輯(二),中壢市,第118-134頁,(1991)。
陳進、林志棟,「路基紅土回彈模數(Mr)特性之研究」,第六屆路面工程學術研討會論文集,第17-40頁,(1992)。
張達德、傅業誠,「路基土壤與基底級配料之改良式MR試驗系統研究」,第八屆鋪面工程研討會論文集,第501-515頁,(1995)。
劉明樓,「柔性路面車轍與疲勞龜裂之預測」,中國土木水利工程學刊,第九卷,第三期,第417-426頁,(1997)。
劉明樓、黃琇雯、蘇珍立,「不同回彈模式對路面績效影響之分析」,第一屆鋪面工程師生研究成果聯合發表會,中壢,第54-63頁,(2000)。
盧俊鼎、黃偉慶,「路基土壤回彈模數的發展與研究趨勢」,台灣公路工程,第二十三卷,第十一期,第2-15頁,(1997a)。
盧俊鼎、黃偉慶,「路基土壤回彈模數試驗方法的演進與設備校正」,第九屆鋪面工程研討會論文集,第487-496頁,(1997b)。
盧俊鼎、黃偉慶,「路基土壤回彈模數試驗系統校正及試體預處理效應評估」, 第十屆鋪面工程研討會論文集,第37-46頁,(1999)。
蘇百加,「夯實紅土材料回彈模數之研究」,碩士論文,國立台灣科技大學,台北,(1988)。
AASHTO, (1962). “The AASHTO road test, report 5.” Pavement Research, Special Report 73, Highway Research Board.
AASHTO, (1986a). Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials.
AASHTO, (1986b). Designation: T274-82; Standard Method of Test for Resilient Modulus of Subgrade Soils, American Association of State Highway and Transportation Officials.
AASHTO, (1992). Designation: T292-91; Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials, American Association of State Highway and Transportation Officials.
AASHTO, (1994). Designation: T294-92; Standard Method of Test for Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils-SHRP Protocol P46, American Association of State Highway and Transportation Officials.
Asphalt Institute (1981). Thickness Design - Asphalt Pavement for Highways and Streets, Ninth, The Asphalt Institute, Manual Series No.1 (MS-1).
Behzadi, G., and Yandell, W.O. (1996). “Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction.” Transportation Research Record, 1540, 97-104.
Belytschko, T. (1972). “Plane stress shakedown analysis by finite elements.” International Journal of Mechnical Sciences, 14, 619-625.
Brown, S.F., Lashine, A.K.F., and Hyde, A.F.L. (1975). “Repeated load triaxial testing of a silty clay.” Geotechnique, 25(1), 95-114.
Chen, D.H., Zaman, M.M., and Laguros J.G. (1994). “Resilient moduli of aggregate materials:variability due to testing procedure and aggregate type.” Transportation Research Record, 1462, 57-64.
Culley, R.W. (1971). “Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repeated loading.” Canadian Geotechnical Journal, 8(3), 359-371.
Diyaljee, A.M., and Raymond, G.P. (1982). “Repetitive load deformation of cohesionless soil.” Journal of the Geotechnical Engineering, ASCE, 123(7), 663-670.
Drumm, E.C., Boateng-Poku, Y., and Pierce, T.J. (1990). “Estimation of subgrade resilient modulus from standard test.” Journal of Geotechnical Engineering, ASCE, 108(GT10), 1215-1229.
Drumm, E.C., Reeves, J.S., Madgett, M.R., and Trolinger, W.D. (1997). “Subgrade resilient modulus correction for saturation effects.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(7), 663-670.
Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. (1980). “Strength, stress-strain and bulk modulus for finite element analysis of stresses and movements in soil masses.” Report No. UCB/GT/80-01, University of California, Berkeley.
Elliott, R.P., and, Thornton, S.I. (1986). “Resilient modulus-what does it mean?” Proceedings 37th Highway Geology Symposium, Helena, Montana, 283-301.
Elliott, R.P., and Thornton, S.I. (1988). “Simplification of subgrade resilient modulus testing,” Transportation Research Record, 1192, 1-7.
Figueroa, J.L., and Thompson, M.R. (1980). “Simplified structural analysis of flexible pavement for secondary roads based on ILLI-PAVE.” Transportation Research Record, 776, 5-10.
Fredlund, D.G., and Berbergan, A.T. (1977). “Relation between resilient modulus and stress conditions for cohesive subgrade soils,” Transportation Research Record, 642, 73-81.
Gaskin, P.N., Raymond, G.P., and Addo-Abedi, F.Y. (1979). “Repeated compressive loading of a sand.” Canadian Geotechnical Journal, 16, 798-802.
Huang, Y.H. (1993). Pavement Analysis and Design, Prentice Hall, Englewood Cliffs, N.J.
International Union of Railways (1970). Question 71, Stresses in the rails, the ballast and in the formation resulting from traffic loads. In repeated loading of clay and track foundation design. IUR Office for Research and Experiments, Utrecht, Report 12, p.45.
James, M., Khaled, K., Richard, A., and Farrar, M.J. (1994). “Factors influencing determination of a subgrade resilient modulus value.” Transportation Research Record, 1462, 72-78.
Kenis, W. (1977). “Prediction design procedures-a design method for pavements using the VESYS structural subsystem.” Proceeding, 4th International Conference on Structural Design of Asphalt Pavement, Ann Arbor, Mich., 101-133.
Khedr, S. (1985). “Deformation characteristics of granular base course in flexible pavement.” Transportation Research Record, 1043, 131-138.
Konder, R.L. (1963). “Hyperbolic stress-strain response: cohesive soils.” Journal of Soil Mechanics and Foundation Engineering, ASCE, 89(1), 115-143.
Kim, D.S., and Drabkin, S. (1994). “Accuracy improvement of external resilient modulus measurement using specimen grouting to end platens.” Transportation Research Record, 1462, 65-71.
Lambe, T.W. (1958). “The structure of compacted clay.” Journal of Soil Mechanics and Foundation Engineering, ASCE, 84(SM2), 1654-1 to 1654-34.
Larew, H.G., and Leonards, G.A. (1962). “A repeated load strength criterion.” Proceedings, 41, Highway Research Board, 529-556.
Lee, W. (1993). Evaluation of in-service subgrade resilient modulus with consideration of seasonal effects. Ph.D. dissertation. Purdue University.
Lotfi, H.A. (1984). Development of rational compaction specification cohesive soils. Ph.D. dissertation. University of Maryland.
Makiuchi, K., and Shackel, B. (1976). “Soil characterization using a repeated loading cubical triaxial apparatus.” Proceedings, 8th Australian Road Research Board Conference, 8(7), 22-29.
Melan, E. (1936). “Theorie Statisch unbestimmter systeme aus ideal-plastischen baustoff.” Sitzungsberichte der Akademie der Wissenschaften in Wien, 1: 45-195.
Mitchell, R.J., and King, R.D. (1976). “Cyclic loading of an Ottawa area Champian sea clay.” Canadian Geotechnical Journal, 14, 52-63.
Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1994). “Influence of testing procedure and LVDT location on resilient modulus of soils.” Transportation Research Record, 1462, 91-101.
Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1995). “Resilient properties of labortary compacted subgrade soils.” Transportation Research Record, 1504, 87-102.
Mohammad, L.N., Huang, B., Puppala, A., and Allen, J. (1999). “A regression model for resilient of subgrade soils.” Proceedings, Transportation Research Board.
Monisimith, C.L., Ogawn, N., and Freeme, C.R. (1975). “Permanent deformation characteristics of subgrade soils due to repeated loading.” Transportation Research Record, 537, 1-17.
Muhanna, A.S. (1994). A testing procedure and a model for resilient modulus and accumulated plastic strain of cohesive subgrade soils. Ph.D. dissertation. North Carolina State University.
Muhanna, A.S., Rahman, M.S., and Lambe, P.C. (1998). “Model for resilient modulus and permanent strain of subgrade soils.” Transportation Research Record, 1619, 85-93.
Muhanna, A.S., Rahman, M.S., and Lambe, P.C. (1999). “Resilient modulus measurement of fine-grained subgrade soils.” Transportation Research Record, 1687, 3-12.
Ping, T., Zaman, M.M., and Laguros, J.G. (1998) “Gradation and moisture effects on resilient moduli of aggregate bases.” Transportation Research Record, 1619, pp.75-83.
Ping, W.V., and Yang, Z. (1998). “Experimental verification of resilient deformation for granular subgrades.” Transportation Research Record, 1639, 12-22.
Pezo, R.F., Carlos, G., Hudson, W.R., and StokoeⅡ, K.H. (1992). “Development of reliable resilient modulus test for subgrade and non-granular subbase materials for use in routine pavement design.” Report Ⅱ 77-4F, Center for Transportation Research, Universty of Texas at Austin.
Norman, D., Pumphrey, J.R., and Lentz, R.W. (1986). “Deformation analyses of Florida highway subgrade sand subjected to repeated load triaxial tests.” Transportation Research Record, 1089, 49-56.
Puppala, A., Mohammad, L.N., and Allen, A. (1996). “Engineering behavior of lime-treated Louisiana subgrade soil.” Transportation Research Record, 1546, 24-31.
Quintus, H.V., and Killingsworth, B. (1998). “Analyses relating to pavement material characterization and their effects on pavement performance.” FHWA, Publication No. FHWA-RD-97-085.
Raymond, G.P., Gaskin, P.N., and Addo-Abedi, F.Y. (1979). “Repeated compressive loading of Leda clay.” Canadian Geotechnical Journal, 14(1), 1-10.
Seed, H.B., and Chan, C.K. (1959). “Undrained strength of compacted clays after soaking,” Journal of Soil Mechanics and Foundation Engineering, ASCE, 85(5), 87-128.
Seed, H.B., Chen, C.K., and Lee, C.E. (1962). “Resilience characteristics of subgrade soils and their relation to fatigue in asphalt pavement.” Proceedings, First International Conference on the Structure Design of Asphalt Pavement, University of Michigan, 611-636.
Seed, H.B., Mitry, F.G, Monismith, C.L., and Chen, C.K. (1967). “Prediction of flexible pavement deflections from laboratory repeated-load tests.” NCHRP Report 35, Highway Research Board.
Sharp, R.W., and Booker, J.R. (1984). “Shakedown of pavements under moving surface loads.” Journal of Transportation Engineering, ASCE,110(1), 1-14.
Sharp, R.W. (1985). “Pavement design based on shakedown analysis.” Transportation Research Record, 1022, 99-107.
Thadkamalla,G.B., and George, K.P. (1995). “Characterization of subgrade soils at simulated field moisture,” Transportation Research Record, 1481, 21-27.
Thompson, M.R., and Robnett, Q.L. (1979). “Resilient properties of subgrade soil.” Journal of Transportation Engineering, ASCE, 105(1), 71-89.
Thompson, M.R. (1989). “Factors affecting the resilient moduli of soil and granular materials.” Workshop on Resilient Modulus Testing, Oregon State University, Corvallis, Oregon.
Thornton, S.I., and Elliott, R.P. (1986). “Resilient modulus-what is it?” Proceedings 37th Highway Geology Symposium, Helena Montana, 267-282.
Tseng, K.H., and Lytton, R.L. (1986). “Prediction of pavement deformation in flexible pavement materials. Presented at ASTM Symposium Implication of Aggregates in the Design, Construction and Performance of Flexible Pavements, New Orleans, La.
Uzan, J. (1985). “Characterization of granular material.” Transportation Research Record, 1022, 52-59.
Uzan, J. (1992). “Resilient characterization of pavement materials.” International Journal for Numerical and Analytical Methods in Geomechanics, 16, 453-459.
Werkmeister, S., Dawson, A.R., and Wellner, F. (2001). “Permanent deformation behavior of granular materials and the Shakedown concept.” Proceedings 80th Annual Meeting, Transportation Research Board, Washington D.C., Paper No. 01-0152.
Yapa, K.A.S.A. (1988). Simplified mechanistic rut depth prediction procedure for low volume roads. Master”s thesis, Texas A&M University College Station.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2002-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡