博碩士論文 89323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.214.224.224
姓名 劉貴銘(KUEI-MING LIU)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 波源疊加法在二維聲場之分析
(Analysis of Two-Dimension Acoustics Using the Method of Superposition)
相關論文
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 腰椎人工椎間盤之運動軌跡分析★ 骨釘骨板鎖固機構之冷焊現象
★ 人工牙根與骨骼介面之生物力學研究★ 熱交換器之熱換管及端板擴管殘留應力分析
★ 耦合有限元素法與邊界積分式於三維彈性力學的應用★ 邊界積分式於剛體聲場散射問題的應用
★ 新型輪椅座墊之設計與有限元分析★ 耦合有限元素法與邊界積分式於隔音牆效能之分析
★ 有限元素法與邊界積分式於流固互制問題的應用★ 人體耳道之有限元素與邊界元素分析
★ 奇異項重建法在二維聲場邊界元素分析之應用★ 三維心電圖與病症自動判別系統之研究
★ 無網格數值分析法應用於股骨頭之生物力學★ 不同離子撞擊冰體及其混合體之光譜分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文之目的在探討利用波源疊加法分析在不同邊界條件下之放射及散射聲場,以往研究振動體都為緩慢變動的邊界條件。而本論文對變動較為驟烈的邊界條件進行分析,
,由測試結果顯示,所得到的數值解與邊界元素法的數值解相比極為準確,證實此方法在二維聲場問題上,為一有效適用於各種邊界條件的數值方法。
文中對圓形剛體進行散射分析,將就不同波數條件下進行測試,發現所得數值解與解析解相當一致。因此,驗證利用本文方法對剛體散射分析亦為一有效準確數值方法。
摘要(英) A Superpostion Method for Analysis of Two-Dimension Acoustics
關鍵字(中) ★ 波源疊加法
★ 活塞聲場分析
關鍵字(英) ★ Superposition Method
★ Piston
論文目次 目 錄
頁次
中文摘要 I
誌謝 II
目錄 III
圖目錄 V
表目錄 VI
符號說明 VII
一、緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文架構 4
二、疊加法公式推導 5
2.1 公式推導 5
2.2 公式轉換 8
2.3 數值演算 9
三、實例測試與討論 12
3.1 圓形振動體的聲場放射 12
3.2 長方形振動體的聲場放射 14
3.3 活塞的聲場分析 18
四、聲場散射分析與討論 23
4.1 聲場散射公式 23
4.2 聲場散射分析 26
五、結論 30
參考文獻 32
附錄A
附錄B
參考文獻 ``A Variational Formulation of Damped
Acousto-Structural Vibration Problem," Journal of Sound and
Vibration, Vol. 4, pp. 172-186.
2.Hunt, J. T., Knittel, M. R.,and Barach, D. (1974)
``Finite Element Approach to Acoustics Radiation from Elastics Structure,"
The Journal of Acoustical Society of America, Vol. 55, No. 2, pp. 269-280.
3.Hunt, J. T., Knittel, M. R., Nichols, C. S., and Barach, D. (1975)
``Finite Element Approach to Acoustic Scattering From Elastics Structure,"
The Journal of Acoustical Society of America, Vol. 57, No. 2, pp. 287-299.
4.Kandidov, V. P. and Khristochevskii, S. A. (1978)
``Determination ofthe Pressure of a Fluid on a Cylinder by the Finite Element
Method," Soviet Physics-Acoustics, Vol. 24, No. 3, PP. 392-395.
5.Petyl, M. (1982)
``Finite Element Techniques for
Acoustics," in: R. G. White and J. G. Walker, eds.,Noise and
Vibration, Ellis Horwood Limited, Chichester, West Sussex.
6.Melvyn, S. M. (1965)
``A Finite Element Method Applies to the Vibration of Submerged Structures,"
J. Ship Researc, Vol. 9, No. 1, pp. 11-12.
7.Petyl, M., Lea, J., and Koopmann, G (1976)
``A Finite Element Method for Determing the Acoustic Modes of Irregular Shaped
CAVITIES," Journal of Sound and Vibration, Vol. 45, pp. 495-502
8.Joppa, P. D. and Fyfe, I. M. (1978)
``A Finite Element Analysis of the Impedance Properties of Irregular Shaped Cavities with Absorptive Boundaries," Journal of Sound and Vibration, Vol. 56, pp. 61-69.
9.Liu, W. K (1981) ``Finite Element Procedures for Fluid-Structure
Interations and Application to Liquid Storage Tank," Nuclear
Engineering and Design, Vol. 65, pp. 221-238.
10.Liu, W. K. and Ma, D. C. (1982) ``Computer Implementation Aspects for
Fluid-Structure Interactions Problem," Computer Methods in Applied
Mechanics and Engineering, Vol. 31, pp. 129-148.
11.Chen, L. H., and Schweikert, D. G. (1963)
``Sound Radiation from an Arbitary Body," The Journal of Acoustical Society of America, Vol. 35, No. 10, pp. 1626-1632.
12.Chertock, G. (1964)
``Sound Radiation from Vibration Surface," The
Journal of Acoustical Society of America, Vol. 36, No. 7, pp. 1305-1313.
13.Copley, L. G. (1967)
``Integral Equation Method for Radiation from Vibrating Bodies," The Journal of Acoustical Society of America, Vol. 41, No. 4, pp. 807-816.
14.Copley, L. G.( 1968)
``Fundamental Result Concerning Integral
Representations in Acoustic Radiation," The Journal of Acoustical
Society of America, Vol. 44, No. 1, pp. 28-32.
15.Shaw, R. P. (1988)
``Integral Equation Method in Acoustics," in: C. A. Brebbia, ed., Boundary Element X, Vol. 4: Geomechanics, Wave Propagation and
Vibrations, Sprinter-Veriag, London, pp. 221-244.
16.A. Boag, Y. Leviatan, and A. Boag(1988)
``Analysis of acoustic scattering from fluid cylinders using a multifilament source model," The Journal of Acoustical Society of
America, Vol. 83, pp. 1-8.
17.G. Koopmann, L. Song, J. Fahnline (1989)
``A method for computing acoustic fields based on the
principle of wave superposition," The Journal of Acoustical Society of
America, Vol. 86, pp. 2433-2438.
18.D. T. Wilton,I. C. Mathews and R. A. Jeans (1993)
``A clarification of nonexistence problems with superposition method," The Journal of Acoustical Society of America, Vol. 94, pp. 1676-1680.
19.R. Jeans and I. C. Mathews(1992)
``The wave superposition method as a robust technique for computing acoustic fields," The Journal of Acoustical Society of America, Vol. 92, pp. 1156-1166.
20.R D. Miller, E. T. Moyer, JR, H. Huang and H. Uberall (1991)
``A comparison between the boundary element method
and the wave superposition approach for the analysis of the scattering
fields from rigid bodies and elastics shells," The Journal of Acoustical Society of America, Vol. 89, pp. 2185-2196.
21.Chenshaw, C. W, (1962)
National Physical Laboratory Mathematical
Tables, Her Majesty’’s Stationery office, London, England.
22.李訓良 (2002)
``奇異項重建法在二維聲場邊界元素分析之應用,"
國立中央大學機械工程研究所碩士論文, 中壢, 台灣
23. Bowman, J. J., Senior, T. B. A. and Uslenghi, P. L. E. (1987)
Electromagnetic and Acoustic Scattering by Simple Shape},
Cambridge/Hemisphere, New York.
指導教授 鄔蜀威(Shu-Wei Wu) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明