博碩士論文 89323017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.204.56.104
姓名 許文騰(Wen-Teng Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ 電子構裝用無鉛銲錫之低週疲勞行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討應力比及頻率效應對AISI 347不銹鋼腐蝕疲勞性質之影響,分析在空氣、純水、NaCl及H2SO4水溶液中之高週疲勞及疲勞裂縫成長的差異性。在疲勞裂縫成長實驗方面,同時量測裂縫閉合程度,以了解裂縫閉合效應對疲勞裂縫成長速率之影響。此外,亦利用光學式顯微鏡(OM)及掃描式電子顯微鏡(SEM)觀察疲勞破斷面,以了解裂縫的生成及成長模式。
實驗結果顯示,不論應力比為R = 0.1或R = 0.5的狀態下,皆以H2SO4水溶液之高週壽命下降最多,其次為3.5 % NaCl水溶液。在長裂縫成長行為(stage II)方面,三種水溶液中之裂縫成長速率差異不大,而空氣中僅在R = 0.5時略低於其他環境,由此顯示高週腐蝕疲勞壽命主要消耗在裂縫起始階段。此外,平均應力的提升明顯導致AISI 347不銹鋼在各環境下之高週壽命降低及裂縫成長速率提高。在頻率效應方面,負荷頻率從5 Hz降至1 Hz,對AISI 347不銹鋼之腐蝕疲勞行為並無明顯的影響,僅在3.5 % NaCl中,腐蝕產物造成的裂縫閉合效應會因為頻率降低而明顯提高。
利用以負荷範圍及最大負荷值為參數所衍生之平均應力整合模式,可以有效的將不同應力比條件下的高週疲勞壽命及疲勞裂縫成長性質加以整合。而利用有效應力因子強度範圍DKeff來評估不同應力比對AISI 347不銹鋼的裂縫成長行為的影響,則有最佳的效果。
摘要(英) The aim of this study is to investigate the influence of load ratio and frequency on the corrosion fatigue behavior of AISI 347 stainless steel in different environments. In particular, the high-cycle fatigue (HCF) and fatigue crack growth (FCG) behavior in air, water, NaCl, and H2SO4 solutions under several load ratios and frequencies were made a comparison. Crack opening levels were also measured in order to characterize the crack closure effects on FCG behavior. Fractography and microstructural analyses with optical microscopy (OM) and scanning electron microscopy (SEM) were conducted to investigate the corrosion fatigue crack initiation and propagation mechanisms.
Results showed that, for a given cyclic loading condition, the fatigue strength of AISI 347 stainless steel was the lowest in H2SO4 solution followed by NaCl solution. However, the FCG rates in the given three aqueous environments were almost equivalent and not significantly different from those in air. These results implied that the initial fatigue cracking stage controlled the HCF life of AISI 347 stainless steel. An increase in mean stress level resulted in a faster crack growth rate and a shorter fatigue life for AISI 347. Decreasing loading frequency from 5 Hz to 1 Hz had no significant effect on the corrosion fatigue behavior of AISI 347 stainless steel except in 3.5 % NaCl where greater crack closure effect due to corrosion products was found in the lower frequency.
A concept of using the range and peak value of the applied loading as the driving force parameters was applied to evaluate the load ratio effects on the HCF and FCG behavior without invoking the crack closure data. However, the effective stress intensity factor range, DKeff, provided a better means to describe the FCG behavior at various load ratios in the given environments.
關鍵字(中) ★ 應力比
★ 疲勞裂縫成長
★ AISI 347不銹鋼
★ 腐蝕疲勞
關鍵字(英) ★ load ratio
★ fatigue crack growth
★ corrosion fatigue
★ AISI 347 stainless steel
論文目次 List of Tables V
List of Figures. VI
第一章 簡介 1
1-1 研究背景 1
1-2 腐蝕疲勞機構 2
1-3 沃斯田鐵系不銹鋼腐蝕疲勞性質文獻回顧 4
1-4 應力腐蝕破裂 7
1-5 平均應力與頻率效應對腐蝕疲勞的影響 8
1-6 平均應力效應整合模式 12
1-7 研究目的 13
第二章 實驗方法與程序 15
2-1 材料及試片製作 15
2-2 固溶退火熱處理 15
2-3 實驗環境 15
2-4 軸向疲勞試驗 16
2-5 疲勞裂縫成長試驗 16
2-6 慢應變速率拉伸試驗 17
2-7 平均應力整合參數之求取 18
2-8 金相、破斷面及裂縫成長模式觀察 19
第三章 結果與討論 21
3-1慢應變速率拉伸試驗 21
3-2平均應力對腐蝕疲勞的影響 22
3-2-1 平均應力對高週疲勞的影響 22
3-2-2 平均應力對裂縫成長行為的影響 24
3-3頻率效率對於腐蝕疲勞的影響 27
3-4平均應力整合模式 28
3-5 破斷面及裂縫成長觀察 31
第四章 結論 34
參考文獻 35
Tables 42
Figures 48
參考文獻 參考文獻
[1] A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed., John Wiley & Sons, Inc., New York, USA, 1996, p. 13.
[2] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, Inc., New York, USA, 1993, p. 312.
[3] I. Ben-Haroe, A. Rosen, and I. W. Hall, “Evolution of Microstructure of AISI 347 Stainless Steel During Heat Treatment,” Materials Science and Technology, Vol. 9, 1993, pp. 620-626.
[4] O. Wachter and G. Brummer, “Experiences with Austenitic Steels in Boiling Water Reactors,” Nuclear Engineering and Design, Vol. 168, 1997, p. 35-52.
[5] M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-307.
[6] S. Suresh, Fatigue of Materials, Cambridge University Press, New York, USA, 1991, Chapter 12.
[7] F. P. Ford and M. Silverman, Mechanistic Aspects of Environment-Controlled Crack Propagation in Steel/Aqueous Environment System, Report No. HTGE-451-8-12, General Electric Company, Schenectady, New York, USA, 1979.
[8] K. N. Krishnan, “Mechanism of Corrosion Fatigue in Super Duplex Stainless Steel in 3.5 Percent NaCl Solution,” International Journal of Fracture, Vol. 88, 1997, pp. 205-213.
[9] K. J. Miller and R. Akid, “The Application of Microstructural Fracture Mechanics to Various Metal Surface States,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 452, 1996, pp. 1411-1432.
[10] R. Akid and G. Murtaza, “Environment Assisted Short Crack Growth Behaviour of a High Strength Steel,” pp. 193-207 in Short Fatigue Cracks, ESIS 13, Mechanical Engineering Publications, London, UK, 1992.
[11] D. J. Duquette, “A Review of Aqueous Corrosion Fatigue,” pp. 12-24 in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, Edited by O. Devereux, A. J. Evily, and R. W. Staehle, National Association of Corrosion Engineers, Houston, USA, 1971.
[12] 柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 127-135.
[13] 左景伊, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安, 1985.
[14] K. Fujiwara, H. Tomari, K. Shimogori, and T. Fukuzuka, “An Electrochemical Study on the Role of Dissolved Oxygen in the IGSCC of Sensitized Type 304 Stainless Steel in Dilute Na2SO4 Solution at 285℃,” Corrosion, Vol. 38, 1982, pp. 69-76.
[15] Y. R. Qian and J. R. Cahoon, “Crack Initiation Mechanisms for Corrosion Fatigue of Austenitic Stainless Steel,” Corrosion, Vol.53, 1997, pp. 129-135.
[16] P. K. Liaw, L. Roth, A. Saxena, and J. D. Landes, “Influence of Environment on Fatigue Crack Growth Rates in an Austenitic Steel,” Scripta Metallurgica, Vol. 17, 1983, pp. 611-614.
[17] M. O. Speidel, “Non-Magnetizable Steels for Generator Gap Rings, Their Resistance to Stress-Corrosion Cracking and Hydrogen Embrittlement,” p. 203 in VGB Conference on Materials and Welding Techniques in the 1980 Power Stations, 1980.
[18] M. W. Mahoney and N. E. Paton, “The Influence of Gas Environments on Fatigue Crack Growth Rates in Types 316 and 321 Stainless Steel”, Nuclear Technology, Vol. 23, 1974, pp. 290-297.
[19] P. Shahinian, H. E. Watson and H. H. Smith, “Fatigue Crack Growth in Selected Alloys for Reactor Applications,” Journal of Materials, Vol. 7, 1972, pp. 527-535.
[20] L. Hagn, “Results of Corrosion Fatigue Tests with Blade Materials,” pp. 2.86-2.136 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, USA, 1983.
[21] M. Gao, S. Chen, and R. P. Wei, “Crack Paths, Microstructure, and Fatigue Crack Growth in Annealed and Cold-Rolled AISI 304 Stainless Steel,” Metallugrical Transcations A, Vol. 23A, 1992, pp. 355-371.
[22] 藍一龍, “AISI 347不銹鋼腐蝕疲勞行為,” 國立中央大學機械工程研究所碩士論文, 2001.
[23] R. P. Wei and G. W. Simmons, “Recent Progress in Understanding Environment Assisted Fatigue Crack Growth,” International Journal of Fracture, Vol. 17, 1981, pp. 235-247.
[24] J. Congleton and W. Yang, “The Effect of Applied Potential on the Stress Corrosion Cracking of Sensitized Type-316 Stainless Steel in High-Temperature Water,” Corrosion Science, Vol. 37, 1995, pp. 429-444.
[25] S. Zhang, T. Shibata, and Haruna, “A HSAB Concept Applied to Inhibition Effect of Anions on IGSCC of Sensitized Type 304,” Corrosion Science, Vol. 42, 2000, pp. 1071-1081.
[26] M. Barsom and T. Rolfe, Fracture and Fatigue Control in Structure, 2nd ed., Prentice-Hall, Inc., New Jersey, USA, 1987, Chapt. 12.
[27] M. O. Speidel, “Corrosion-Fatigue of Steam Turbine Blade Materials,” pp. 1.1-1.20 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
[28] D. Rhodes, K. J. Nix, and J. C. Radon, “Micromechanisms of Fatigue Crack Growth in Aluminum Alloys,” International Journal of Fatigue, Vol. 6, 1984, pp. 3-7.
[29] W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
[30] P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol. 85, 1960, pp. 528-534.
[31] S. Suresh and R. O. Ritchie, “On the Influence of Environment on the Load Ratio Dependence of Fatigue Thresholds in Pressure Vessel Steel,” Engineering Fracture Mechanics, Vol. 18, 1983, pp. 785-800.
[32] R. A. Schmidt and P. C. Paris, “Threshold for Fatigue Crack Propagation and Effects of Load Ratio and Frequency,” pp. 79-94 in Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, American Society for Testing and Materials, Philadelphia, USA, 1973.
[33] S. Suresh and R. O. Ritchie, “Propagation of Short Crack,” International Metals Reviews, Vol. 29, 1984, pp. 445-476.
[34] A. K. Vasudeven, K. Sadanandam, and N. Louat, “A Review of Crack Closure, Fatigue Crack Threshold and Related Phenomena,” Materials Science and Engineering, Vol. A188, 1994, pp. 1-22.
[35] T. M. Rust and V. P. Swaminathan, “Corrosion-Fatigue of Steam Turbine Blade Materials,” pp. 3.107-3.130 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1983
[36] C. Laird and D. J. Duquette, ”Mechanisms of Short Crack Nucleation,” pp. 88-115. in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, Edited by O. Devereux, A. J. Evily, and R. W. Staehle, National Association of Corrosion Engineers, Houston, USA, 1971.
[37] A. K. Vasudevan and S. Suresh, “Influence of Corrosion Deposits on Near-Threshold Fatigue Crack Growth Behavior in 2XXX and 7XXX Series Aluminum Alloys,” Metallurgical Transactions A, Vol. 13A, 1982, pp. 2271-2280.
[38] M. Barsom and T. Rolfe, Fracture and Fatigue Control in Structure, 2nd ed., Prentice-Hall, Inc., New Jersey, USA, 1987, Chapt. 13.
[39] H. L. Marcus, “Environmental Effects II: Fatigue-Crack Growth in Metals and Alloys,” pp. 365-383 in Fatigue and Microstructure, ASM Materials Science Seminar, 14-15 October, 1978.
[40] R. J. Selines and R. M. Pelloux, “Effect of Cyclic Stress Wave Form on Corrosion Fatigue Crack Propagation in Al-Zn-Mg Alloys,” Metallurgical Transactions, Vol.3, 1972, pp. 2525-2531.
[41] N. J. H. Holroyd and D. Hardie, “Factors Controlling Crack Velocity in 7000 Series Aluminum Alloys During Fatigue in an Aggressive Environment,” Corrosion Science, Vol. 23, 1983, pp. 527-545.
[42] Y. G. Chun, S. I. Pyun, and S. M. Lee, “The Influence of Loading Frequency on the Fatigue Crack Propagation Behaviour of Al-Zn-Mg Alloy at Low Cyclic Stress Intensity Level in 3.5 wt% NaCl Solution,” Journal of Materials Science Letters, Vol. 10, 1991, pp. 1439-1442.
[43] D. B. Dawson and R. M. Pelloux, “Corrosion Fatigue Crack Growth of Titanium Alloys in Aqueous Environments,” Metallurgical Transactions , Vol. 5, 1974, pp. 723-731.
[44] F. P. Ford, “Corrosion Fatigue Crack Propagation in Aluminum-7% Magnesium Alloy,” Corrosion, Vol.35, 1979, pp. 281-287.
[45] D. E. Macha, D. M. Corby, and J. W. Jones, “On the Variation of Fatigue Crack Opening Load with Measurement Location,” Proceedings of the Society of Experimental Stress Analysis, Vol. 36, 1978, pp. 207-213.
[46] C. S. Shin and R. A. Smith, “Fatigue Crack Growth from Sharp Notches,” International Journal of Fatigue, Vol. 7, 1985, pp. 87-93.
[47] M. R. Ling and J. Schijve, “The Effect of Intermediate Heat Treatments and Overload Induced Retardations during Fatigue Crack Growth in an Al-Alloy,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 15, 1992, pp. 421-430.
[48] L. W. Wei and M. N. James, “A Study of Fatigue Crack Closure in Polycarbonate CT Specimens,” Engineering Fracture Mechanics, Vol. 66, 2000, pp. 223-243.
[49] B. L. Josefson, T. Svebsson, J. W. Ringsberg, T. Gustafsson, and J. de Mare, “Fatigue Life and Crack Closure in Specimens Subjected to Variable Amplitude Loads under Plain Strain Conditions,” Engineering Fracture Mechanics, Vol. 66, 2000, pp. 587-600.
[50] B. R. Kirby and C. J. Beevers, “Slow Fatigue Crack Growth and Threshold Behavior in Air and Vacuum of Commercial Aluminum Alloys,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 1, 1979, pp. 203-215.
[51] J. E. King, “Surface Damage and Near Threshold Fatigue Crack Growth in a Ni-based Superalloy in Vacuum,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 5, 1982, pp. 177-188.
[52] R. W. Hertzberg, C. H. Newton, and R. Jaccard, “Crack Clouse: Correlation and Confusion,” pp. 139-148, in Mechanics of Fatigue Crack Closure, ASTM STP 982, Edited by J. C. Newman, Jr., and W. Elber, American Society for Testing and Materials, Philadelphia, USA, 1988,.
[53] G. G. Garrett and J. K. Knott, “On the Effect of Crack Closure on the Rate of Fatigue Crack Propagation,” International Journal of Fracture, Vol. 13, 1977, pp. 101-104.
[54] K. Donald and P. C. Paris, “An Evaluation of DKeff Estimation Procedures on 6061-T6 and 2024-T3 Aluminum Alloys,” International Journal of Fatigue, Vol. 21, 1999, pp. S47-S57.
[55] P. C. Paris, H. Tada, and J. K. Donald, “Service Load Fatigue Damage – A Historical Perspective,” International Journal of Fatigue, Vol. 21, 1999, pp. S35-S46.
[56] A. K. Vasudeven and K. Sadanandam, “Application of Unified Fatigue Damage Approach to Compression-Tension Region,” International Journal of Fatigue, Vol. 21, 1999, pp. S263-S273.
[57] K. Sadanandam, A. K. Vasudeven, and R. L. Holtz, “Extension of the Unified Approach to Fatigue Crack Growth to Environmental Interactions,” International Journal of Fatigue, Vol. 23, 2001, pp. S277-S286.
[58] D. Kujawski, “A New (DK+Kmax)0.5 Driving Force Parameter for Crack Growth in Aluminum Alloys,” International Journal of Fatigue, Vol. 23, 2001, pp. 733-740.
[59] D. Kujawski, “A Fatigue Crack Driving Force Parameter with Load Ratio Effects,” International Journal of Fatigue, Vol. 23, 2001, pp. S239-S246.
[60] R. Ayer, C. F. Klein, and C. N. Marzinsky, “Instabilities in Stabilized Austenitic Stainless Steels,” Metallurgical Transactions A, Vol. 23A, 1992, pp. 2455-2467.
[61] D. P. Schweinsberg, B. Sun, and V. Otieno-Alego, “Corrosion and Inhibition of Aged 347 Grade Stainless Steel Boiler Tubes,” Journal of Applied Electrochemistry, Vol. 24, 1994, pp. 803-807.
[62] J. Hickling and N. Wieling, “Electrochemical Investigations of the Resistance of Inconel 600, Incoloy 800, and Type 347 Stainless Steel to Pitting Corrosion in Faulted PWR Secondary Water at 150℃ to 250℃,” Corrosion, Vol. 37, 1981, pp. 147-152.
[63] D. P. Schweinsberg, B. Sun, M. Cheng, and H. Flitt, “Potentiodynamic Estimation of Sensitization of 347 Grade SS Superheater Tubes, Part Ⅰ: Effect of Surface Finish, Scan Rate and Solution Temperature,” Journal of Applied Electrochemistry, Vol. 23, 1993, pp. 1097-1101.
[64] D. P. Schweinsberg, B. T. Sun, M. Cheng and H. Flitt, “The Potentiodynamic Estimation of the Degradation of 347 Grade SS Superheater Tubes, Ⅱ: The Effect of Different Electrolytes,” Corrosion Science, Vol. 36, 1994, pp. 361-372.
[65] W. Tyson, “Embrittlement of Types 316L and 347 Weld Overlay by Post-Weld Heat Treatment and Hydrogen,” Metallurgical Transactions A, Vol. 15, 1984, pp. 1475-1484.
[66] P. Rozenak and D. Eliezer, “Effects of Metallurgical Variables on Hydrogen Embrittlement in AISI Type 316, 321 and 347 Stainless Steels,” Materials Science and Engineering, Vol. 61, 1983, pp. 31-41.
[67] P. Rozenak and D. Eliezer, “Behavior of Sensitized AISI Types 321 and 347 Austenitic Stainless Steels in Hydrogen,” Metallurgical Transactions A, Vol. 20, 1989, pp. 2187-2190.
[68] P. Rozenak, “Effects of Nitrogen on Hydrogen Embrittlement in AISI Type 316, 321 and 347 Austenitic Stainless Steels,” Journal of Materials Science, Vol. 25, 1990, pp. 2532-2538.
[69] D. N. Gladwin, R. H. Priest, and D. A. Miller, “Examination of Fatigue and Creep-Fatigue Crack Growth Behavior of Aged Type 347 Stainless Steel Weld Metal at 650℃,” Materials Science and Technology, Vol. 5, 1989, pp. 40-51.
[70] B. A. Senior, “Cavitational Damage in AISI Type 347 Weld Metal Arising from Creep Deformation,” Materials Science and Engineering A, Vol. 130, 1990, pp. 51-59.
[71] B. A. Senior, J. Maguire, and C. A. Evans, “Effects of Dwell Time on the Creep Damage Generated in AISI Type 347 Weld and 1CrMoV Steel During Creep Fatigue Loading,” Materials Science and Engineering A, Vol. 138, 1991, pp. 103-107.
[72] S. R. Ortner and C. A. Hippsley, “High Temperature Brittle Intergranular Failure in Austenitic Stainless Steels,” Materials Science and Technology, Vol. 8, 1992, pp. 883-895.
[73] S. R. Ortner and C. A. Hippsley, “Effect of Aging on High Temperature Brittle Intergranular Fracture in Austenitic Stainless Steels,” Materials Science and Technology, Vol. 11, 1995, pp. 883-895.
[74] “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 471-475.
[75] “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM E647-95a, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 562-598.
[76] O. Jonas, “Characterization of Steam Turbine Environment and Selection of Test Environment,” pp. 3.35-3.74 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, USA, 1983.
[77] H. F. de Jong, “Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys,” Corrosion, Vol. 34, 1978, pp. 32-36.
[78] 蔡騰群, “超塑性7475鋁鋅鎂合金應力腐蝕性質研究,” 國立台灣大學材料科學與工程學研究所博士論文, 1996.
[79] R. N. Parkins, F. Mazza, J. J. Royuela, and J. C. Scully, “Stress Corrosion Test Methods,” British Corrosion Journal, Vol. 7, 1972, pp. 154-167.
[80] W. E. Ruther, T. F. Kassner, and W. K. Soppet, “Effect of Temperature and Ionic Impurities at Very Low Concentrations on Stress Corrosion Cracking of AISI 304 Stainless Steel,” Corrosion, Vol. 44, 1988, pp. 791-799.
[81] 范萬昌, “不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究,” 國立中央大學機械工程研究所碩士論文, 2000.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明