博碩士論文 89323026 詳細資訊


姓名 王銘輝(Ming-Huei Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有限平板多條邊裂紋成長之探討
(Study of the multi-cracks growth in a finite plate)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文在於探討一有限平板在存在多條邊裂紋時,裂紋間的交互作用。使用ANSYS有限元素分析軟體,建立有限元素分析模型,用於分析多條邊裂紋間的互相影響,及應力強度因子間的變化。當兩條邊裂紋存在時,較長的一條裂紋會成為主要裂紋,而另一條裂紋在一定的區域內將不會成長。本文中利用有限元素分析軟體,找出雙裂紋模式I及模式II的應力強度因子,利用Paris Law 的比較找出兩條裂紋單位時間的成長速率比,模擬兩條邊裂紋疲勞成長的情形。
摘要(英) In this thesis, the intensity factors , of multi edge-cracks are investigated by ANSYS. Once the is large than the the crack length growths. It is forward this existed a demarcation curve of the second crack below which this crack. However, as the second crack length beyond the demarcation curve both crack growth with different behavior the major crack starts with a smaller then accelerates the growth behavior to the simulation as the second crack length becomes under the demarcation curve at which the second crack stop its growing.
關鍵字(中) ★ 應力強度因子
★ 裂縫成長
關鍵字(英) ★ stress intensity factor
★ crack
論文目次 摘要……………………………………………………………………..I
第一章 緒論………………………………………………………....1
第二章 裂紋成長理論簡介………………………………………....5
第三章 數值模擬分析……………………………………………...16
第四章 多裂紋之交互作用………………………………………...29
第五章 結論與建議………………………………………………...46
參考文獻…………………………………………………………..……48
參考文獻 1. Tada, H., Paris, P.C. and Irwin, G.R., The stress analysis of crack handbook, Del Research Corporation (1973).
2. Sih, G.C., Handbook of stress intensity factors, Inst. of Fracture and solid Mechanics, Lehigh University (1973).
3. Rooke, D.P., Baratta, F.L. and Carwright, D.J., Simple methods of determining stress intensity factors, Practical applications of fracture mechanics, AGARDograph 257 (1980).
4. A. Wohler, Uber die Festigkeitversuche mit Eisen und Stahl, Zeitschrift fur Bauwesen, Vol. VIII, X, XIII, XVI, and XX, 1860/70. Englishaccount of this work is in Engineering, Vol. 11, 1871.
5. Griffith, A.A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Of London, A 221 pp. 163-197(1921).
6. Griffith, A.A., The theory of rupture, Proc. 1st Int. Congress Appl. Mech., (1924) pp.55-63. Biezeno and Burgers ed. Waltman (1925).
7. G. R. Irwin, Fracture Dynamics Fracturing of Metals, American Society for Metals, Cleveland, OH, pp. 147-166 (1949).
8. G. R. Irwin, Analysis of Stresses and Strains near the End of a Crack Travrsing a Plate, Transaction of the ASME, Journal of Applied Mechanics, Vol. 24, 1957, pp. 361-364.
9. Paris, P.C., The growth of fatigue cracks due to variations in load, Ph.D. Thesis Lehigh University (1962).
10. Paris, P.C., Gomez, M.P. and Anderson, W.E., A rational analytic theory of fatigue, The Trend in Engineering, 13 pp. 9-14 (1961).
11. J. B. Chang, Round-Robin Crack Growth Predictions on Center-Cracked Tension Specimens Under Random Spectrum Loading, Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, ASTM STP 748, pp. 3-40 (1981).
12. H. Alawi and M. Shaban, Fatigue Crack Growth Under Random Loading, Engineering Fracture Mechanics, Vol. 32, No. 5, pp. 845-854,(1989).
13. 張士田 “隨機負荷下機件疲勞動態可靠度退化模式探討”國立中央大學 碩士論文 (1994).
14. Iida, S. and Kobayashi, A.S., Crack Propagation rate in 7075-T6 plates under cyclic tensile and transverse shear loading, J. Basic Eng. pp. 764-769 (1969).
15. Erdogan, F. and Sih, G.C., On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85 pp. 519-527(1963).
16. Sih, G.C., Strain energy density factor applied to mixed mode crack problem, Int. J. Fracture, 10 pp. 305-322 (1974).
17. Broek, D. and Rice, R.C., Fatigue crack growth properties of rail steels, Battelle report to DOT/TC (1976).
18. Williams, J.G., and Ewing, PD., Fracture under complex stress-The angled crack problem, Int. J. Fract. Mech., 8 pp. 441-446(1972).
19. Roberts, R. and Kibler, J.J., Mode II fatigue crack propagation. J. of Basic Engineering 93 pp.671-680(1971).
20. V. E. Saouma, and I. J. Zatz, An Automated Finite Element Procedure for Fatigue Cracks Propagation Analysis, Engineering Fracture Mechanics, Vol. 20, No. 2, 1984, pp. 321-333.
21. J. Padovan, and Y. H. Guo, "Moving Template Analysis of Crack Growth–1. Procedure Development," Engineering Fracture Mechanics, Vol. 48, No. 3, 1994, pp. 405-425.
22. T.Belytschko.y.y.Lu and L. Gu Crack Propagation By Element-Free Galerkin, Engineering Fracture Mechanics Vol 51 No 2, pp, 295-315, 1995.
23. Eshelby, J.D., Calculation of energy release rate. In Prospects of Fracture Mechanics, pp. 69-84. Sih, Van Elst, Broke, Ed., Noordhoff (1974).
24. Knowles, J.K. and Sternberg, E., On a class of conservation laws in linearized and finite elastics, Arch. For Rational Mech. And Analysis, 44 pp. 187-211(1972).
25. Cherepanov, G.P., Crack propagation in continuous media. USSR, J. Appl. Math. And Mech. Translation 31 p.504(1967).
26. Rice, J.R., A path independent integral and the approximate analysis of strain concentrations by notches and crack, J. Appl. Mech., pp.379-386(1968).
27. 沈國瑞 “無元素分析之積分權值調整法”國立中央大學碩士論文 (2002).
28. J. Padovan, and Y. H. Guo, "Moving Template Analysis of Crack Growth–1. Procedure Development," Engineering Fracture Mechanics, Vol. 48, No. 3, 1994, pp. 405-425.
29. Broek David, Elementary Engineering Fracture Mechanics Graw Hill , Inc . , N . Y . , (1986).
30. Tang,J. and Spencer,B.F.Jr,Reliability Solution for the Stochastic Fatigue Crack Growth Problem, Engineering Fracture Mechanics, Vol.34,No.2,pp.419-433(1989).
指導教授 王國雄(Kuo-shong Wang) 審核日期 2002-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡