博碩士論文 89323039 詳細資訊


姓名 楊秉勳(Pin-Hsuin Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Be與Fe含量對A357合金微結構及 應力腐蝕性質之影響
(Effects of Be and Fe Content on Microstructure and Stress corrosion cracking in A357 Alloys )
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) A357合金中的介金屬化合物主要為β′-Mg2Si析出硬化相以及富鐵相,隨著富鐵相成份與形態的改變,合金的機械性質也會跟著有顯著的改變。許多學者曾經針對Al-Si-Mg合金中添加Be對合金機械性質的影響做過詳細的研究,但其中並不包括抗應力腐蝕性。本研究配製四組Fe與Be含量不同之A357合金,並施以T6熱處理後,利用微結構分析、機械性質量測、電化學量測以及慢應變速率拉伸測試,來探討Be與Fe含量對A357鋁合金微結構(富鐵相介金屬化合物、共晶Si粒子、Mg2Si析出強化相)、機械性質以及應力腐蝕性質之影響。
粗大的富鐵相容易因應力集中成為破裂的起始點,富鐵相的含量越多,材料的機械性質越差。不加Be的A357合金,含有大量的針狀富鐵相及文字型含Mg的富鐵相,Be的添加可減少富鐵相的含量,並改善其成分與形狀,使針狀富鐵相與含Mg的文字型富鐵相被不含Mg的結節狀(球、塊狀)富鐵相取代,含Mg文字型富鐵相的減少,使固溶於基地內的Mg含量增加,促進Mg2Si的析出動力與析出量,藉以提昇材料的機械性質。
富鐵相數量的增加使材料的抗腐蝕能力降低,然而在晶界處並沒有富鐵相的存在,故富鐵相的數量與形態對合金抗應力腐蝕性質無明顯之影響。A357合金晶界析出物數量少,析出物彼此之間沒有連結,且其活性與基地相近,不利於應力腐蝕裂縫成長,故具有良好的抗應力腐蝕性質。
摘要(英) β′-Mg2Si and iron-beraing phases are the main intermetallic compounds in A357 alloys.With the changes of composition and shape,mechanical properties of the alloys change evidently.Many people researched the relation between Be content and mechanical properties but rsearchs on stress corrosion cracking are absent.Effects of Be and Fe Content on Microstructure and Stress corrosion cracking in A357 Alloys are investigated.
A larger amount of acicular shape and scrip morphology of Mg-containing structure of iron-bearing phases were found in Be-free alloys.
These structures are replaced by nodular shape Mg-free structure of iron-bearing constituents when Be is added.The addition of Be reduce the amount of iron-bearing phases,increase amount of solid solution of Mg.The addition of Be could enhance the precipitation kinetics and increase the amounts of Mg2Si to promote the tensile properties.With the increasing the amount of iron-bearing phases,the corrosion resistane is reduced.The amounts,composition and shape of iron-bearing phases are insignificant about SCC resistance because of the absence of the iron-bearing pricipitations at the grainboundaries. Less amounts,discontinuous arrangement and similar activity to matrix of the precipitations at grainboundary are unfavorable for grow of the crevices. Therefore A357 alloys have excellent SCC resistance.
關鍵字(中) ★ 應力腐蝕破裂 關鍵字(英) ★ A357
★ stress corrosion cracking
論文目次 總目錄
誌謝…………………………………………………………Ⅰ
摘要…………………………………………………………Ⅱ
總目錄……………………………………………………………Ⅲ
圖目錄………………………………………………………Ⅴ
表目錄……………………………………………………………Ⅵ
一﹑前言……………………………………………………1
1.1 A357鑄造鋁合金簡介………………………………1
1.2 應力腐蝕破裂………………………………………3
二﹑理論基礎與文獻回顧…………………………………5
2.1 A357合金的析出硬化…………………………………5
2.11 固溶處理(solution heat treatment) …………5
2.12 低溫淬火(quench)…………………………………6
2.13 時效析出……………………………………………6
2.2 介金屬化合物的性質………………………………12
2.3 鋁合金應力腐蝕破裂………………………………13
2.4 顯微組織與應力腐蝕破裂的關係…………………20
三﹑研究方法與步驟………………………………………31
3.1 合金配製……………………………………………31
3.2 熱處理………………………………………………23
3.3 微結構分析…………………………………………23
3.31 OM金相觀察………………………………………23
3.32 SEM及EDS分析……………………………………23
3.33 TEM分析……………………………………………23
3.34 導電度量測…………………………………………23
3.35 微差掃描熱分析(DSC)……………………………24
3.36 影像分析…………………………………………24
3.4 機械性質分析………………………………………24
3.41 硬度測試……………………………………………24
3.42 拉伸強度測試………………………………………24
3.5 應力腐蝕測試………………………………………25
3.51 慢應變速率拉伸(SSRT)……………………………25
3.52 電化學量測…………………………………………25
四﹑結果與討論……………………………………………26
4.1 微結構分析…………………………………………26
4.11 金相觀察及EDS分析………………………………26
4.12 影像分析……………………………………………30
4.13 微分掃瞄熱分析(DSC)……………………………30
4.14 導電度量測(%IACS)………………………………34
4.2 機械性質分析………………………………………36
4.21 硬度量測……………………………………………36
4.22 拉伸試驗………………………………………38
4.3 應力腐蝕測試………………………………………40
4.31 電化學量測…………………………………………40
4.32 慢應變速率拉伸(SSRT)…………………………42
五﹑結論……………………………………………………50
六﹑參考文獻…………………………………………………………51
圖目錄
圖2.1 Al-Si合金二元相圖………………………………8
圖2.2 Al-7%Si-Mg平衡圖………………………………9
圖2.3 Mg與Si在Al-Si-Mg合金中,固溶度與
溫度關係圖…………10
圖2.4 應力腐蝕發生的條件……………………………16
圖3.1 拉伸試棒規格……………………………………21
圖3.2 實驗流程…………………………………………22
圖4.1 A357合金鑄造狀態………………………………27
圖4.2 四組合金經T6熱處理後之金相圖………………28
圖4.3 合金C中之介金屬化合物與EDS分析……………29
圖4.4 合金D中之介金屬化合物與EDS分析……………31
圖4.5 不同Be與Fe含量之合金A、B、C、D經固溶淬火後之DSC曲線。………………………………………………33
圖4.6 不同Be與Fe含量之合金A、B、C、D之Tafel曲線。…41
圖4.7 不同Be含量之合金A與合金B之拉伸破斷面。……………44
圖4.8 四組A357合金經SSRT測試後,以SEM觀察近破斷面之試棒側面。………46
圖4.9 合金A與C之試棒側面放大圖……………………47
圖4.10 A357合金經T6熱處理後,以TEM觀察之晶界微………49
表目錄
表1.1 A357與其類似合金成份表………………………1
表1.2 A357鋁合金與其他鋁合金之性質比較……………2
表2.1 Al-Si-Mg合金中最主要的介金屬化合物………11
表2.2 拉、壓應力對應力腐蝕的影響…………………17
表2.3 發生應力腐蝕材料與其特定環境………………18
表2.4 一些環境與應力腐蝕的關係……………………19
表3.1 合金成份…………………………………………21
表4.1 不同Be與Fe含量之A357合金之Si粒子與富鐵相之影像分析的結果…………………………………32
表4.2 四組A357合金鑄造狀態下(C)、固溶淬火後(C0)及經T6熱處理後之導電度%IACS。…………………………35
表4.3 四組A357合金於鑄造狀態下、固溶淬火後及經T6熱處理之洛氏硬度值。……………………………………37
表4.4 四組A357合金拉伸試驗的結果。………………39
表4.5 不同Be與Fe含量之A357合金之腐蝕性質。……43
表4.6 四組合金經慢速率拉伸應變後之結果。………43
參考文獻 1.J.R.Davis, Aluminum and aluminum alloys, ASM Specialty Handbook, Ohio, ASM, 1994.
2.J.E.Hatch, Aluminum: Properties and physical metallurgical, Ohio, ASE, pp. 320-350, 1984.
3.K.G.Wikle, Improving aluminum casting with beryllium, AFS Trans., pp. 513-518, 1978.
4.Y.H.Tan, S.L.Lee and Y.L.Lin, Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys, Metallu- rgical and Materials Transactions A vol. 26A, pp. 1195-1205, 1995.
5.Thmoas, J.Inst.Met, 90(1961-63)57.
6.Lutts, Acta Met., vol. 9, pp57-69, 1961.
7.K.Matsuda, S.Tada, S.Ikeno, T.Sato and A.Kamio, Crystal system of rod-shaped precipitates in an Al-1.0mass%Mg2Si-0.4mass%Si alloy, Scripta Metallurgical et Materialia, vol.32 , pp. 1175-1180, 1995.
8.D.A.Dranger, R.R.Sawtell and M.M.Kersker, Effects of beryllium on the properties of A357.0 castings, AFS Transactions, vol. 15, pp. 579-586, 1984.
9.O.Vorren, J.E.Evensen and T.B. Pedersen, Microstructure and mechanical properties of AlSi(Mg) casting alloys, AFS Trans., vol. 92, pp. 459-466, 1984.
10.L.A.Bendersky, A.J.Mcalister and F.S. Biancaniello, Phase transformation during annealing of rapid solidified Al-rich Al-Fe-Si alloys, Metall. Trans. A, vol. 19A, pp. 2893-2900, 1988.
11.P.Skjerpe, Intermetallic phase formed during DC-casting of an Al-0.25wt pct Fe-0.13wt pct Si alloy, Metall. Trans. A, vol. 18A, pp. 189-200, 1987.
12.A.M.Zakharov, I.T.Gul’din, A.A.Arnol’d and Yu.A.Matsenko, Phase diagram of the Al-Si-Fe system within the concentration range of 10-14%Si and 0-3%Fe, Russ. Metall., vol. 3, pp. 177-180, 1988.
13.T.D.Burleigh, The postulated mechanisms for stress corrosion cracking of aluminum alloys, Corrosion, vol. 47, pp. 89-98, 1991.
14.P.K.Poulose, J.E. Morral and A.J.Mcevily, Stress corrosion crack velocity and grain boundary precipitates in Al-Zn-Mg alloy, Metall. Trans., vol. 5, pp. 1393-1400, 1974.
15.M.O.Speidel, Stress corrosion cracking of aluminum alloys, Metall. Trans. A, vol. 6A, pp. 631-651, 1975.
16.L.Christodoulou and H.M. Flower, Hydrogen embrittlement and trapping in Al-6%Zn-3%Mg, Acta Metall., vol. 28, pp. 481-487, 1980.
17.D.Apelian, S.Shivkumar and G.Sigworth, Foundmental aspects of heat treatment of cast Al-Si-Mg alloys, AFS Trans., pp. 727-742, 1989.
18.B.Closset, R.A.L.Drew and J.E.Gruzleski, Eutectic silicon shape control by situ measurement of resistivity, AFS Trans., pp. 9-16, 1986.
19.C.W.Meyers, Solution heat treatment effects on ultimate tensile strength and uniform elongation in A357 Aluminum alloys, AFS Trans., pp. 511-518, 1986.
20.M.H.Mulazimoglu, R.A.L.Drew and J.E.Druzleski, The effects of strontium on the electrical resistivity and conductivity of aluminum-silicon alloys, Metall. Trans. 18A, pp. 941-947, 1981.
21.S.Shivkumar, C.Keller and D.Apelian, Aging behavior in Al-Si-Mg alloys, AFS Trans., pp905-911, 1990.
22.S.Shivkumar, S.Ricci, Jr. and D.Apelian, Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy, AFS Trans., vol. 18, pp. 913-922, 1990.
23.L.F.Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterwordths and Co., Ltd., p. 534, 1976.
24.A.Couture, Iron in aluminum casting alloys-a literature survey, AFS Int. Cast Metals J.,pp. 9-17, 1981.
25.G.Gustafsson, T.Thorvaldsson and G.L.Dunlop, The influence of Fe and Cr on the microstructure of casting alloys, Metall. Trans. 17A, pp. 45-52, 1986.
26.L.F.Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterwordths and Co., Ltd., p. 760, 1976.
27.Blanc.C. and Mankowski, G. Corros. Sci.,39 ,p. 949, 1997.
28.Ch.Blanc., Y.Roques and G.Mankowski, Application of phase interformetric microscopy to studies of the bshavior of coarse intermetallic particles in 6056 aluminum alloy, Corrosion Sci., vol. 40, No. 6, pp. 1019-1035, 1998.
29.E.Brillas, P.L.Cabot, F.Centellas, J.A.Garrido, E.Perez and R.M.Rodriguez, Electrochemical oxidation of high-purity and homogeneous Al-Mg alloys with low Mg content.
30.應力腐蝕機理, 喬利杰, 王燕斌及褚武揚著, 科學出版社, 北京, 35-67頁, 1993.
31.M.O.Speidel, Current understanding of stress corrosion crack growth in aluminum alloys,The theory of stress corrosion cracking in alloys, Ed. By Dr.J.C. Scully, NATO, Brussels, p. 333, 1971.
32.E.H.Hollingsworth and H.Y.Hunsicker, Metals Handbook, vol. 13, Corrosion, 9th ed., ASM International, Metals Park, OH, p. 590, 1987.
33.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 337-338, 1996.
34.A.J.Sedriks, J.A.S. Green and D.L.Novak, On the chemistry of the solution at tips of stress corrosion cracks in Al alloys, Corrosion-NACE, vol. 27, pp. 198-202.
35.J.K.Park and A.J.Ardell, Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651, Metall. Trans. A,vol. 15A, pp. 1531-1543, 1984.
36.R.K.Viswanadham, T.S.Sun and J.A.S. Dreen, Grain boundary segregation in Al-Zn-Mg alloys-implications to stress corrotion cracking, Metall. Trans., vol. 11A, pp. 85-89,1980.
37.G.M.Scamans, N.J.H. Holroyd and C.D.S. Tuck, The role of magnesium segregation in the untergrainular stress corrosion cracking of aluminum alloys, Corrosion Sci., vol. 27, pp. 329-347, 1987.
38.F.E.Watkinson and J.C.Scully, The stress corrosion cracking of a high purity Al-6Zn-3Mg alloy, Corrosion Sci., vol. 12, pp. 905-924, 1972.
39.S.L.Pyun, T.S.Suh and H.P.Kim, Microstructural dependence of stress corrosion cracking behavior in commercial Al-Zn-Mg-Cu alloy(AA7075), Werkst. and Korros., vol. 38, pp. 129-134, 1987.
40.T.C.Tsai and T.H.Chuang, Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy, Metall. Trans., in Press, 1996.
41.P.Doig and J.W.Edington, Influence of precipitates free zones on the stress corrosion susceptibility of a Al-5.9%Zn-3.2%Mg alloy, Corrosion-NACE, vol. 31, pp. 347-352, 1975.
42.M.H.Mulazimoglu, R.A.L.Drew and J.E.Druzleski, Electrical conductivity of aluminum-rich Al-Si-Mg alloys, J. Mat. Sci. letter8, 8, pp. 297-300,1989.
43.Y.H.Tan and S.L.Lee, Correlation between microstructure and mechanical properties of A357 aluminum alloys containing beryllium and iron, chaper 5, pp.1, 1995.
44.W.Stephen Tait, Ph.D., An introduction to electrochemical corrosion testing for practicing engineers and scientists, pp. 38-40, 1994.
45.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 88, 1996.
46.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 266-268, 1996.
47.D.O.Sprowls, Metalls Handbook, vol. 13, Corrosion, 9th ed., ASM International, Metals Park, OH, p. 263, 1987.
48.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 524, 1996.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2002-7-19

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡