博碩士論文 89323044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.144.238.20
姓名 官長治(CHANG-CHIH KUAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 溫度循環對電子產品失效及性能退化效應之數學模式評估
(Mathematic Modle Estimate of Temperature cycling for Electronic Products Failure)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究推導電子產品在溫度循環試驗中之退化方程式,並利用收集到的電子產品在不同溫度環境中之失效或性能退化資料進行迴歸分析,以瞭解溫度循環效應的數學模式。此外,利用田口實驗計畫法進行實驗及分析,以瞭解各參數對溫度循環試驗結果之影響程度。
在溫度循環數學模式方面,文中將進一步將把可靠度與各溫度循環參數結合在同一數學模式中,並把收集到的循環數-可靠度關係資料代入方程式,以求出循環數相關之係數值。得到PLCC IC循環數之參考係數-0.855,SMT銲點循環數之參考係數為-0.77。在溫度循環數學模式驗證方面,將修正型反冪次模式與修正型Hughes模式以本文實驗獲得之數據及收集到的資料驗證其準確性。在田口實驗計畫法方面,則是以瞭解電容及無線電話模組各溫度循環參數所提供之貢獻度為主。
摘要(英) This article investigates the effects of thermal cycling on the degradation of electronic products, such as components, small module and SMT welds. Three parameters including temperature range, heating rate and numbers of cycles are considered. From the results, the effect of normal thermal cycling condition on the components and small module is very small. The tensile strength of SMT welds decrease with increasing temperature range and heating rate. The relationship between tensile strength, temperature range, heating rate and numbers of cycles can be described by the modified inverse power law and modified Hughes equation for SMT welds.
關鍵字(中) ★ 溫度循環
★ 電子產品
關鍵字(英) ★ Electronic Products
★ Temperature cycling
論文目次 摘要 I
誌謝 II
總目錄 III
表目錄 VI
圖目錄 IX
符號說明 XI
第一章 緒論
1- 1 研究動機與目的
1- 2 文獻回顧
1-2-1國內相關重要文獻
1-2-2國外相關重要文獻
第二章 理論說明
2-1 溫度循環試驗
2-1-1溫度循環所造成之熱疲勞
2-2 溫度循環對於電子產品之影響
2-3 溫度循環對於銲接點之影響
2-3-1各種電子構裝銲接技術
2-3-2電子構裝銲接點破壞機構
2-4 溫度循環效應的數學模式
2-5 田口實驗設計法簡介
2-5-1品質損失函數
2-5-2望大特性的S/N比
第三章 實驗設備與步驟
3-1 試件規格
3-2 儀器設備
3-3 溫度循環試驗之規劃
3-4 實驗步驟
3-5 田口實驗參數設計
第四章 結果與討論
4-1 電子產品之退化效應數學模式
4-1-1 溫度範圍-溫變率-可靠度關係式
4-1-2 溫度循環數學模式驗證
4-2 各溫度循環參數之貢獻率
4-2-1 訊號雜訊比之計算
4-2-2 變異數分析
第五章 結論
參考文獻
參考文獻 參考文獻
估”,國防科技發展方案學術合作協調小組研究報告,計畫編號89-CS-D-008-008,中華民國89年。
2. 黃俊仁,“溫度循環及溫變率大小對於電子產品之破壞效應評估(二)”,國防科技發展方案學術合作協調小組研究報告,計畫編號89-CS-7-008-003,中華民國89年。
3. 許芳勳,“溫度循環篩選之最佳化研究”,中華民國品質管制學會高雄市分會七十九年度年會徵文集,137-140頁。
4. 余信超,“環境應力篩選溫度循環之規劃與評估原則”,中華民國品質管制學會高雄分會七十九年度年會徵文集,171-174頁。
5. 廖德銘,“環境應力篩選高科技電子產品製程管制工具”,中華民國品質管制學會高雄分會七十九年度年會徵文集,165-169頁。
6. 張國仁,“電子產品溫度循環篩選案例研究”,品質管制月刊, 34-37頁,中華民國86年。
7. DOD-HDBK-344 (USAF), “Environmental Stress Screening (ESS) of Electronic Equipment,” 1986.
8. 賴耿陽,“產品壽命管測技術”,復漢出版社,中華民國88年。
9. 馮克林,“封裝元件可靠度加速測試及失效評估”,工業材料,158期,90-98頁,中華民國89年。
10. 曾勝蒼,黃登源,王啟旭,“電子產品加速壽命試驗研究”,行政院國家科學委員會研究報告,中華民國77年。
11. 王福琨,“微電子元件之可靠度壽命預測”,行政院國家科學委員會研究報告,中華民國87年。
12. F. A. Stam, “Effects of Thermomechanical Cycling on Lead and Lead-free (SnPb and SnAgCu) Surface Mount Solder Joints,” Microelectronics Reliability, Vol. 41, No. 11, pp.1815-1822, 2001.
13. D. J. Xie, “Process Capability Study and Thermal Fatigue Life Prediction of Ceramic BGA Solder Joints,” Finite Elements in Analysis and Design, Vol. 30, No. 1, pp.31-45, 1998.
14. A. Scandurra, “SIMS Microprofiles of Pb-5%Sn Solder Joints in Electronic Devices after Accelerated Life Tests,” Applied Surface Science, Vol. 89, No. 1, pp.1-10, 1995.
15. D. B. Barker, “PWB Solder Joint Life Calculations under Thermal and Vibrational Loading,” Journal of the IES, Vol. 35, No. 1, pp.17-25, 1992.
16. D. Hart, “Fatigue Testing of a Component Lead in a Plated Through Hole,” IEEE Proceedings of the National Aerospace and Electronics Conference, pp.1154-1158, 1988.
17. J. Huang, H. Y. Lai, Y. Y. Qian, Y. H. Jiang, and Q. L. Wang, “A Dislocation Model of Shear Fatigue Damage and Life Prediction of SMT Solder Joints under Thermal Cycling,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 4, pp.553-558, 1992.
18. M. N. Donna, E. B. Frank, P. V. Andres, B. Paul, G. Suresh, and F. Richard, “Attachment Reliability Evaluation and Failure Analysis of Thin Small Outline Packages (TSOP’s) with Alloy 42 Leadframes,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 16, No. 8, pp.961-971, 1993.
19. J. Shams and N. Tom, “Accelerated Reliability Tests: Solder Defects Exposed,” IEEE Proceedings Annual Reliability and Maintainability Symposium, pp.43-49, 1999.
20. T. P. Parker, “A Study of Failures Identified during Board Level Environmental Stress Testing,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 15, No. 6, pp.1086-1092, 1992.
21. L. Condra, “Comparison of Plastic and Hermetic Microcircuits Under Temperature Cycling and Temperature Humidity Bias,” IEEE Transactions on Components, Hybrids, Manufacturing Technology, Vol. 15, No. 5, pp.640-650, 1992.
22. K. D. Cluff, “Characterizing the Humidity and Thermal Environment of Commercial Avionics for Accelerated Test Tailoring,” University of Maryland College Park, PHD Disseration, 1996.
23. Z. P. Wang, “Board Level Reliability Assessment of Chip Scale Packages,” Microelectronics and Reliability, Vol. 39, No. 9, pp.1351-1356, 1999.
24. P. Norman, “Environmental Stress Screening of Electronic Assemblies, A thermal Transient Study,” IEEE Proceedings Electronic Components and Technology Conference, pp.93-98, 1993.
25. Y. L. Mok, “Optimizing Environmental Stress Screening using Mathematical Programming,” Journal of the IES, Vol. 39, No.3, pp. 37-43, 1996.
26. S. C. Lee, “Thermal Cyclic Fatigue of the Interconnect of a Flex-type BGA,” Electronic Components & Technology Conference, pp.1384-1391, 2000.
27. S. A. Smithson-Smithson, and Associates, “Effectiveness and Economics - Yardsticks or ESS Decisions,” IES Proceedings, pp.737-742, 1990.
28. J. M. Kallis, “Stress Screening of Electronic Modules,” Proceedings of the Annual Reliability and Maintainability Symposium, pp.59-66, 1990.
29. J. Diekema, “Beyond ESSEH,” USA Evaluation Engineering, Vol. 30, No. 3, pp.84-89, 1991.
30. V. Sarihan, “Energy-based Methodology for Damage and Life Prediction of Solder Joints under Thermal Cycling,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 17, pp.626-631, 1994.
31. 馮克林,“簡談電子元件銲錫可靠度”,工業材料,124期,93-99頁,中華民國86年。
32. F. Bartlett, “Reliability Evaluation of Custom and Standard Surface Mount Plastic Encapsulated Microcircuits for Military Avionics Applications,” Proceedings of the IEEE 1997 National, Vol. 1, pp.120-130, 1997.
33. U. K. Viswanathan, R. Kishore, M. K. Asundi, “Effect of Thermal Cycling on the Mechanical-properties of 350-grade Maraging-steel,” Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, Vol. 27, pp.757-761, 1996.
34. R. D. Jean, J. B. Duh, “The Thermal Cycling Effect on Ti-Ni-Cu Shape-memory Alloy,” Scripta Metallurgica et Materialia, Vol. 32, pp.885-890, 1995.
35. H. C. Chen, Z. Y. Liu, Y. C. Chuang, “Degradation of Plasma-sprayed Alumina and Zirconia Coatings on Stainless Steel during Thermal Cycling and Hot Corrosion,” Thin Solid Films, Vol. 223, pp.56-64, 1993.
36. C. Badini, M. Lavecchia, A. Giurcanu, J. Wenhui, “Damage of 6061/SiCw Composite by Thermal Cycling,” Journal of Materials Science, Vol. 32, pp.921-930, 1997.
37. Y. C. Chan, “Electrical Failure of Multilayer Ceramic Capacitors Caused by High Temperature and High Humidity Environment,” Electronic Components and Technology Conference, pp.847-853, 1994.
38. G. R. Halford, and S. S. Manson, “Life Prediction of Thermal Mechanical Fatigue using Strain Range Partitioning,” Thermal Fatigue of Materials and Components, ASTM STP 612, D. A. Spera and D. F. Mowbray, Eds., pp.239-254, 1976.
39. L. Rrmy, F. Rezai-Aria, R. Danzer, and W. Hoffelner, “Evaluation of Life Prediction in Temperature Fatigue,” Low Cycle Fatigue, ASTM STP 942, H. D. Solomon, G. R. Kaisand, and B. N. Leis, Eds., pp.1115-1132, 1988.
40. F. Rezai-Aria, M. Francois, and L. Remy, Fatigue and Fracture of Engineering and Structures, Vol. 11, pp.291-302, 1988.
41. G. Cailletaud, J. P. Culie, and H. Kaczmarek, Mechanical Behavior of Materials IV, Proceeding of 4th International Conference, J. Carlsson and N. G. Ohlson, Eds., Pergamon Press, Oxford, Vol. 1, pp.255-261, 1973.
42. 江國寧,“電子構裝與計算力學”,中華民國力學學會會訊81期,1-13頁,中華民國86年。
43. N. Pascoe, “Environmental Stress Screening of Electronic Assemblies, a Thermal Transient Study,” Electronic Components and Technology Conference, pp. 93-98, 1993.
44. H. Caruso, and A. Dasgupta, “A Fundamental Overview of Accelerated Testing Analytical Models,” Journal of the IEST, Vol.41, No.1, pp.16-20, 1998.
45. W. Nelson, “Accelerated Testing, Statistical Models, Test Plans and Data Analyses”, John Wiley & Sons Inc., 1990. 。
46. J. W. Evans, J. Y. Evans, P. Lall, and S. L. Cornford, “Thermomechanical Failures in Microelectronic Interconnects,” Microelectronics Reliability, Vol. 38, No. 4, pp.523-529, 1998.
47. B. B. Donald, D. Abhijit, and G. P. Michael, “PWB Solder Joint Life Calculations under Thermal and Vibrational Loading,” IEEE Proceedings Annual Reliability and Maintainability Symposium, pp.451-459, 1991.
48. L. T. Nguyen, “Effects of Die Coatings, Mold Compounds and Test Conditions on Temperature Cycling Failures,” Electronic Components and Technology Conference, pp.210-217, 1994.
49. M. G. Bevan, “Solder Joint Fatigue: Comparison of Hand Soldering to Vapor Phase Soldering on Surface Mounted Components for Aerospace Applications,” Electronics Manufacturing Technology Symposium, Vol. 1, pp.80-85, 1994.
50. J. Huang, “A Dislocation Model of Shear Fatigue Damage and Life Prediction of SMT Solder Joints under Thermal Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 15, No. 4, pp.553-558, 1992.
指導教授 黃俊仁(Jiun-ren Hwang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明