博碩士論文 89323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.35.132
姓名 毛之成(Tze-Chern Mao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 釔鐵柘榴石與雜質的添加對於以LHPG法生長晶纖之研究
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 釔鐵柘榴石材料因具有磁光法拉第旋轉特性及於近紅外光範圍有優異的穿透性,故在磁光元件上被廣泛的應用著。然而,因YIG屬於非共熔材料且其浮熔區會有非穩態性的振盪,故欲生長高品質晶體相當不易。本文以雷射加熱提拉法對YIG的晶纖生長機制作為探討,發現當其熔區成分在含鐵量高過78 mole %時可直接提拉出YIG晶纖,但若低於此含量則熔區會藉由自我調適行為,以YFeO3相的凝固與氧化鐵的排入熔區,進行改變熔區的成分改變至超過78 mole %含鐵量之後,因此時的凝固相轉為YIG,而供料也為YIG,故可達到一平衡狀況,穩定生長YIG晶纖。另外,對於雷射加熱提拉法(Laser Heating Pedstal Growth, LHPG)的方法也可採用緻密化的熔媒晶種與二階段拉晶方式可生長出特定方向的晶纖,使其長出的晶纖於應用上更為的便利。
另外,隨著新型態的設計與發展,提升YIG的磁光法拉第旋轉量可藉由摻雜的方式達成,所以在本文中,CeO2被添加至YIG材料中,企圖生長優異的Ce:YIG晶纖。然而為了生長出此成分的高品質晶纖,影響浮熔區法生長的晶纖品質的最重要兩個因素:材料棒的製成與晶纖生長時的拉速,需被逐一檢視與探討。就以固態陶瓷燒結的實驗中發現,添加CeO2後的YIG陶瓷,其燒結溫度可視其添加量適度的降低燒結溫度即可完成高緻密的陶瓷,而陶瓷的成分、微結構與磁性表現則也會因不同的添加量而有不同程度的變化。對於Ce:YIG晶纖的生長,拉晶的速度則必須視添加量的增加而逐漸減緩,主要是因為受到組成過冷的影響所致,若生長速度未適度的調降,則生長出的晶纖會較未添加的晶纖容易生成胞狀組織,並且也因為熱張力對流的影響,溶質將聚集於生長介面的中心處,導致長出胞狀組織的晶纖,在中心部分之胞狀組織也會比周圍的部分發展的更為完整。
摘要(英) Yttrium iron garnet (Y3Fe5O12, YIG) single crystal is widely used in magneto-optical applications in fiber-optical communication systems and magnetic field sensors, both because of its large Faraday rotation and because it is highly transparent in the near-infrared region.?However, growing YIG single-crystals is difficult because of the incongruent melting of the compound and the unsteady oscillatory molten zone. In this study, YIG single-crystal fibers were grown by LHPG method. Based on the experimental results show that YIG single-crystal fibers could be directly grown at the stable freezing interface when the melt had a composition of 78 ~ 87 mole % Fe2O3. When the seed’s Fe2O3 concentration was below 78 mole %, the YFeO3 would crystallize out until the composition of the melt increased along the liquidus curve until it needed a concentration of 78 mole % Fe2O3 or higher, whereupon YIG started to crystallize from the liquid. In addition, YIG single-crystal fibers with the desired crystallographic orientation could only be obtained using a two-pass method.
CeO2 was added into YIG materials to increase the quantitative Faraday rotation of YIG. With the floating zone method, there were two essential conditions for growing a single crystal fiber of YIG: the degree of sintering of the feed rod and the growth rate. From our study, it can be seen that Ce:YIG ceramic with the necessary densification could be fabricated using a lower sintering temperature than that required for pure YIG ceramic. Moreover, the greater the amount of CeO2 added, the slower the pulling rate needed to grow good quality single crystal fibers. When a faster pulling rate is used to grow Ce:YIG material, a more significant amount of foreign phase and cellular structures will form in the core region than in the peripheral region of the grown crystal fibers.
關鍵字(中) ★ 釔鐵柘榴石 關鍵字(英) ★ YIG
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 IIV
表目錄 VII
圖目錄 VIII
符號說明 XII
第一章 緒論 1
1.1 研究背景 2
1.2 材料介紹 4
1.3 相關研究 6
1.3.1 釔鐵柘榴石 6
1.3.2摻鈰釔鐵柘榴石 9
1.4 研究動機 11
1.5 研究目的 13
1.6 研究方法 14
圖表 15
第二章 材料製程與實驗方法 23
2.1粉末的調配 23
2.2陶瓷材料棒的製作 24
2.3 晶纖生長 25
2.3.1 二氧化碳雷射加熱系統 26
2.3.2 光學轉換系統 26
2.3.3 長晶機台 26
2.3.4 紅外線熱影像儀 27
2.3.5 晶纖生長方式 27
2.4 晶體後續檢測 28
圖 31
第三章 YIG晶纖在LHPG系統下的生長機制 35
3.1自我調適行為 35
3.2陶瓷晶種孔隙對晶纖生長之影響 40
3.3控制YIG晶纖的生長方向 42
3.4本章結論 43
圖表 45
第四章 鈰摻雜對陶瓷製程的影響 61
4.1 溫度對陶瓷燒結之影響 61
4.2 Ce:YIG陶瓷的密度與燒結溫度關係 63
4.3 Ce:YIG陶瓷的成分與微結構 64
4.4 Ce:YIG陶瓷的磁性檢測 66
4.5 本章結論 69
圖表 70
第五章 鈰摻雜對晶纖生長的影響 87
5.1 YIG熔區的震盪對晶纖生長的影響 87
5.2 拉晶速度對Ce:YIG晶纖生長的影響 89
5.3 Ce:YIG晶纖生長的熔區振盪與胞狀結構的觀測 91
5.4 晶體檢測 93
5.5 本章結論 95
圖表 97
第六章 總結論 113
參考文獻 115
參考文獻 [1] X. W. Zhang, S. Y. Zhang and G. R. Han, “Growth and characterization of magneto-optical single-crystal ReYbBiIG with temperature-stabilized Faraday rotation”, J. Magn. Magn. Mater., Vol. 246, pp. 67-72 (2002).
[2] M. Kurimoto, S. Matsubayashi, K. Ando, T. Saito and T. Tsushima, “Temperature dependence of the Faraday effect in Rh4+-substituted magnetic garnets”, J. Appl. Physi., Vol. 83, pp. 4897-4901 (1998).
[3] K. Shinagawa, E. Tobita, T. Saito and T. Tsushima, “Faraday effect in(Pb2+, Th4+)-substituted magnetic garnets”, J. Magn. Magn. Mater., Vol. 171-181, pp. 251-252 (1998).
[4] M. N. Deeter, S. Milian, G. W. Day, G. Diercks and S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing”, IEEE Trans. Magn., Vol. 30, pp. 4464-4466 (1994).
[5] T. Sekijima, H. Kishimoto, T. Fujii, K. Wakino and M. Okata, “Magnetic, optical and microwave properties of rare-earth-substituted fiberous yttrium iron garnet single crystals grown by floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp.5874 (1999).
[6] C. Leycuras, H. Le Gall, M. Desvignes, M. Guillot and A. Marchand, “Magneto-optic and magnetic properties of praseodymium substituted garnets”, J. Appl. Phys., Vol. 53, pp. 8181-8183 (1982)
[7] Von Aulock, Wilhelm H, “Garnet”, Handbook of Microwave ferrite Materials, Sec. 2, pp.65, (1965).
[8] 余樹楨,晶體之結構與性質,ch.10 空間群對稱,p.171,渤海堂文化事業有限公司,中華民國八十五年十一月一版四刷。
[9] C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu and T. S. Yeh, “Low temperature sintering of microwave magnetic garnet materials”, Mater. Chem. Phys., Vol.79, pp.138-142 (2003).
[10] Deltronic Crystal Industries, INC.
[11] 近角聰信,鐵磁性物理,ch 9 亞鐵磁氧化物的磁性,p172,廣州大學出版社,2002年7月第一版。
[12] 胡朝彰,雷射加熱提拉法生長釔鐵柘榴石晶纖之研究,國立中央大學機械工程研究所博士論文,民國92年。
[13] N. P. Padture and G. Klemens, “ Low thermal conductivity in garnet”, J. Am. Ceram. Soc. Vol.80, pp.1018-1020 (1997).
[14] J. W. Nielsen and E. F. Dearborn, “The growth of single crystals of magnetic garnets”, J. Phys. Chem. Solids., Vol.5, pp.202 (1958).
[15] H. J. Van Hook, “Phase relation in the ternary system Fe2O3-FeO-YFeO3”, J. Am. Ceram. Soc., Vol.45, pp.162 (1962).
[16] S. Kimura and I. Shindo, “Single crystal growth of YIG by the floating zone method”, J. Cryst. Growth., Vol. 41, pp. 192 (1977).
[17] S. Kimura, I. Shindo, K. Kitamura and Y. Mori, “Evaluation of yttrium iron garnet single crystals grown by the floating zone method”, J. Cryst. Growth., Vol.44, pp.621 (1978).
[18] S. Kimura, K. Kitamura and I. Shindo, “Growth of rare earth garnet crystals by the floating zone method”, J. Cryst. Growth., Vol.65, pp.543 (1983).
[19] S. Kimura and K. Kitamura, “Floating zone crystal growth and phaseequilibria: a review”, J. Am. Ceram. Soc., Vol.75, pp.1440(1992).
[20] C. H. Chun, “Experiments on steady and oscillatory temperature distribution in a floating zone due to the Maragoni convection”, Acta Astronaut., Vol. 7, pp.479 (1980).
[21] 黃禎宏,YIG非穩態熱流場研究及晶纖生長,國立中央大學機械工程研究所碩士論文,民國86年。
[22] T. Sekijima, H. Satoh, K. Tahara, T. Fujii, K. Wakino and M. Okada, “Growth of fibrous YIG single crystals by the self-adjusting solvent FZ method”, J. Cryst. Growth., Vol. 193, pp. 446 (1998).
[23] E. Kaldis, Crystal Growth of Electronic Materials, North-Holland, Amsterdam, 1985, ch. 11, p. 127.
[24] K. Nagashio, K. Kuribayashi and Y. Takamura, “Direct crystallization of Y3Fe5O12 garnet by containerless solidification processing”, Materials Transactions, Vol. 42, pp. 233-237 (2001).
[25] K. Nagashio and K. Kuribayashi, “Phase selection in the undercooled peritectic Y3Fe5O12 melt”, Acta Materialia, Vol. 50, pp. 1973-1981 (2002).
[26] C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu and T. S. Yeh , J. Magn. Magn. Mater., Vol. 239, pp.490 (2002).
[27] K. A. Wickersheim and R.A. Buchanan, “Optical studies of exchange in substituted garnets”, J. Appl. Physi., Vol. 38, pp.1048-1049 (1967).
[28] C. Leycuras, H. L. Gall, J. M. Desvignes, M. Guillot and A Marchand, “Magnetic and magnetoptical properties of a cerium YIG single crystal”, IEEE Trans. Magn., VOL. MAG-21, pp.1660-1662 (1985).
[29] M. Kucera, J. Bok and K.Nitsch, “Faraday rotation and MCD in Ce doped YIG”, Solid State Commun., Vol. 69, pp.1117-1121 (1989).
[30] M. Gomi, H. Furuyama and M.Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering”, J. Appl. Physi., Vol. 70, pp.7065-7067 (1991).
[31] G. J. Diercks, Jr and S. Samuelson, “Magneto-optical properties Y3-x-yCexLayFe5O12”, IEEE Trans. Magn., Vol. 31, No. 6, pp.3328-3330 (1995).
[32] T. Sekijima, H. Kishimoto, T. Fujii, K. Wakino and M. Okata, “Magnetic, optical and microwave properties of rare-earth-substituted fiberous yttrium iron garnet single crystals grown by floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp.5874-5878 (1999).
[33] S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada and K. Kitamura, “Magneto-optical properties of cerium substituted yttrium iron garnet single crystals grown bt traveling solvent floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp. 4122-4126 (1999).
[34] T. Sekijima, T. Funakoshi, K. Katabe, K. Tahara and T Fujii, “Growth and optical properties of Ce-substituted fiberous YIG single crystals”, Jpn. J. Appl. Phys., Vol. 37, pp.4854-4857 (1998).
[35] T. Sekijima, T. Fujii and K. Wakion, “Optical Faraday rotator using Ce-substituted fiberous YIG single crystal grown by floating-zone method with YAG laser heating”, IEEE trans. Microwave Theor. Tech., Vol. 47, pp.2294-2298 (1999).
[36] T. Sekijima, H. Itoh, T. Fujii, K.Wakino and M. Okada, “Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fiberous yttrium iron garnet single crystals”, J. Cryst. Growth., Vol.229, pp.409-414 (2001).
[37] M. –B. Park and N. –H. Cho, “Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce:YIG) films prepared by RF magnetron sputter techniques”, J. Magn. Magn. Mater., Vol. 231, pp.253-264 (2001).
[38] S. Mino, A. Tate, T. Uno, T. Shintaku and A. Shibukawa, “structure and lattice of Ce-substituted yttrium iron garnet films prepared by RF sputtering”, Jpn. J. Appl. Phys., Vol. 32, pp.3154-3159 (1993).
[39] O. Kamada, and Sadao, “Magnetic field sensors using Ce:YIG single crystals as a Faraday element”, IEEE Transactions on Magnetics, Vol.37, pp.2013-2015 (2001).
[40] W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmers, “The redistribution of solute atoms during the solidification of metals”, Acta Metall., Vol. 1 pp.428-437 (1953).
[41] P. Grosseau, A. Bachiorrini and B. Guilhot, “Preparation of Polycrystalline Yttrium-Iron-Garnet Ceramics”, Powder Tech., Vol. 93, pp. 247-251 (1997).
[42] C. Y. Tsay, C. Y. Liu, K. S. Liu, I-N. Lin, L. J. Hu, T. S. Yeh, “Low temperature sintering of microwave magnetic garnet materials”, J. Magn. Magn. Mater., Vol. 239, pp. 490-494 (2002).
[43] W. Tolksdorf, B. Strocka and F. Welz, “Growth of seeded and unseeded yttrium garnet crystals from high temperature solutions studied by induced striations”, J. Cryst. Growth., Vol 65, pp. 549 -555 (1983).
[44] M. F. Lazarescu, A. S. Manea and E. Elena, “The influence of the melt cooling rate on the properties of YIG single crystal grown by the flux method from sintered polycrystalline material”, Cryst. Res. Technol., Vol.29, pp.889 (1994).
[45] H. J. Lim, R. C. DeMattei, R. S. Feigelson and K. Rochford, “Striation in YIG fibers grown by the laser-heated pedestal method”, J. Cryst. Growth., Vol. 212, pp. 191-203 (2000).
[46] L. K. Shick, J. W. Nielsen, A. H. Bobeck, A. J. Kurtzig, P. C. Michaelis and J. P. Reekstein, “Liquid phase epitaxial growth of uniaxial garnet films: circuit deposition and bubble propagation”, Appl. Phys. Lett. Vol.18, pp.89-91 (1971).
[47] J. C. Chen and C. C. Hu, “Quantitative analysis of YIG, YFeO3 and Fe3O4 in LHPG-grown YIG rods”, J. Cryst. Growth., Vol. 249, pp. 245-250 (2003).
[48] R. S. Feigelson, in: Crystal Growth of Electronic Materials, Ed. E. Kaldis (North-Holland, Amsterdam, 1985) ch. 11, p. 127.
[49] C. C. Hu, J. C. Chen and C. H. Huang, “Effect of pulling rates on the quality of YIG single crystal fibers”, J. Cryst. Growth., Vol. 225, pp. 257-263 (2001).
[50] J. C. Chen, L. T. Liu and C. C. Young, “Study of the growth mechanism of BSO during a LHPG method”, J. Cryst. Growth., Vol. 198/199, pp. 476-481 (1999).
[51] 楊榮中, “柘榴石之反應結研究:緻密化與微觀結構之探討” 清華大學材料科學工程研究所博士論文 (1990)。
[52] B. Strocka, P. Holst and W. Tolksdorf, “An empirical formula for the calculation of lattice constants of oxide garnets based on substituted yttrium-and gadolinium-iron garnets”. Philips J. Res., Vol. 33, pp. 186-203 (1978).
[53] J. S. Kum, S. J. Kim, In- Shim, C. S. Kim, “Magnetic properties and Mössbauer studies of Y3-xCexFe5O12 (x = 0.00, 0.01 and 0.3) fabricated using a sol-gel method”, IEEE Trans. Magn., Vol. 39, pp. 3118 -3120 (2003).
[54] G. J. Diercks, Jr., S. Samuelson, “Magneto-optical properties of Y3-x-yCexLayFe5O12”, IEEE Trans. Magn., Vol. 31, pp. 3328-3330 (1995).
[55] A. Globus, M. Guyot, “Wall displacement and bulging in magnetization mechanisms of the hysteresis loop”, Phys. Stat. Sol. (B), Vol. 52, pp. 431 (1972).
[56] P. Vaqueiro, M. A. López-Quintela, J. Rivas, J. M. Greneche, “Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process”, J. Magn. Magn. Mater., Vol. 169, pp. 56-58 (1997).
[57] R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. López-Quintela, D. Caeiro, “Particle size effects on magnetic properties of yttrium iron garnets prepared by sol-gel method”, J. Magn. Magn. Mater., Vol. 247, pp. 92-98 (2002).
[58] Y. K. Chang, J. Cryst. “The float-zone growth of Ti3Au and Ti3Pt”, J. Cryst. Growth., Vol. 62, pp. 627-632 (1983).
[59] M. Jurisch and W. Löser, “Analysis of periodic non-rotational w striations in Mo single crystals due to nonsteady thermocapillary convection”, J. Cryst. Growth., Vol. 102, pp. 214-222 (1990).
[60] Ch. –H. Chun, “Marangoni convection in a floating zone under reduced gravity”, J. Cryst. Growth., Vol. 48, pp. 600-610 (1980).
[61] G. Müller, “Convective instabilities in melt growth configurations”, J. Cryst. Growth., Vol. 128, pp. 26-36 (1993).
[62] B. W. Delf, A. Green and R. J. Stevens, “Sputtering of yttrium iron garnet (YIG) thin films from a powder mixture of Fe2O3 and Y2O3”, Phys. Stat. Sol. (a), Vol.13, pp.493-498 (1972).
[63] C. E. Chang and W. R. Wilcox, “Inhomogeneities due to thermocapillary flow in floating zone melting”, J. Cryst. Growth., Vol. 28, pp. 8-12 (1975).
[64] C. E. Chang and W. R. Wilcox, Int. J. Heat Mass Transfer., “Analysis of surface tension driven flow in floating zone melting”, Vol. 19, pp. 355-366 (1976).
[65] M. Gomi, H. Furuyama and M. Abe, J. Appl. Phys., “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering”, Vol. 70, pp. 7065-7067 (1991).
[66] M. Gomi, K. Satoh and M. Abe, Jpn. J. Appl. Phys., “Giant faraday rotation of Ce-substituted YIG films expitaxially grown by RF sputtering”, Vol. 27, pp. L1536-L1538 (1988).
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明