博碩士論文 89323071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.134.104.173
姓名 王志華(Zhi-Hua Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 潔淨能源:超焓燃燒器研發
(Clean Energy: Research and Development of Excess Enthalpy Combustor)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 小型熱再循環觸媒燃燒器之實驗研究及應用★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究自製一小型超焓燃燒器(二維瑞士捲燃燒器,最大直徑7.5cm~21 cm,高度5.0 cm),作流場觀測、溫度量測和燃燒後污染物排放成份濃度量測,並嚐試應用所獲之知識以研發小體積之省能熱水器。超焓燃燒器是應用熱再循環和熱釋放之熱力學轉換原理,試將熱損失減到最小、提高燃燒效能,達到超貧油燃燒之目的。實驗採用丙烷/空氣預混燃氣,因丙烷為液態比氣態燃氣密度高上千倍,故可大大縮小燃料儲存所須空間。預混燃氣循瑞士捲層層捲道,進入中心燃燒室,引燃燃燒後,高溫之生成物則循另一捲道流出,因反應物捲道與生成物捲道乃環環相繞,故可將大量的生成物熱經熱傳導和熱輻射來加熱反應物,使燃燒可呈超焓狀態。
研究重點是針對瑞士捲燃燒器的幾何形狀和操作參數變化,對於燃燒穩定性、貧油可燃極限(lean flammability limit)和瑞士捲內流道溫度分佈之影響,作系統化分析。驗結果顯示,燃燒器在當量比(equivalence ratio)φ »0.10時仍可持續在燃燒室內燃燒,証明超焓燃燒器可大大延伸貧油可燃極限(傳統丙烷之貧油可燃極限為φ=0.57)。我們藉由燃燒室液態冷流場模擬和實際燃燒流場的觀測,找到了一較佳的燃燒室設計,使火焰能穩定駐留在燃燒室內燃燒。分別改變化學物理參數(如φ)、流場參數(如燃氣流速Vf、雷諾數Ref 等)和幾何參數(如捲數N、流道間距D)條件,並使用熱再循環率(HR)來作為燃燒器的設計參考依據,結果發現瑞士捲燃燒器之燃燒室內平均最高溫度(Tm)分佈,會隨著加熱時間、N和f等增加而提高,例如φ 從0.30增加到0.50,Tm會從1054oC提高到1282oC,在固定N =3.0,D =1.0cm和加熱時間(t=10 min)條件下。燃燒室火焰穩定性與Ref等參數相關,將詳加討論。在φ =0.40~0.50時,於廢氣出口處量測污染物濃度,發現NOx值均低於10 ppm以下,而CO值約在於40~60 ppm之間,但在臨界貧油當量比(critical equivalence ratio, φc<0.30)時,CO濃度則有明顯增加的趨勢,因此可知在φ = φc之燃燒是不完全和不穩定的。當N值增加及D值減小時, HR值可有效提升,故可進行更貧油燃燒(fc值更小)。
有關省能熱水器之初步測試,是利用水管循瑞士捲燃燒器之生成物捲道上方,捲繞到燃燒室中心區,並採用熱傳導方式加熱水溫,發現加熱效果並不理想。因此,須改變加熱方式,未來擬將仍有300oC左右之燃燒後氣體直接注入水箱中,應可研發出一高省能、小體積(20 cm×20 cm×5 cm)之熱水器。
摘要(英) This thesis investigates experimentally combustion characteristics of a small premixed excess enthalpy burner, a two dimension Swiss-roll burner whit the maximum diameter varying from 7.5~21 cm and with a height of 5.0 cm. We visualize variations of the flow fields the combustion zone of Swiss-roll burners with six different designs. Temperature distributions and pollutant emissions in these excess enthalpy burners are measured quantitatively for the first time to develop a compact, very low fuel consumed water heater. The excess enthalpy burners apply the principle of heat recirculating and the conversion of thermodynamics to minimize heat losses, increase burning efficiency, and make extra lean premixed burning possible. Propane/air mixtures are used, because propane is a liquid, with a density nearly one thousand times greater than that of gaseous fuels such that the space for the fuel storage can be significantly reduced.
It is found that the present Swiss-roll burner can be operated at extra lean conditions, where the equivalence ratio f is slightly smaller than 0.1. This φ»0.1 is much much less than the common lean flammability limit of C3H8/air mixtures in which φ»0.57. We also found a better design of the combustion zone of the Swiss-roll burner in which flames can be stabilized in the combustion zone. Using the heat recirculation rate (HR) as a criterion for the performance of the burners, the optimal design of the burners was examined in terms of φ, the fluid velocity Vf, the flow Reynolds number Ref , the number of rolls of the burner N, and the interval channel width of the Swiss-roll burner D. Results show that the mean temperature (Tm) inside the combustion zone is strongly influenced by the operating (heating) time period t, N andf. For examples, when φincreases from 0.30 to 0.50, Tm increases from 1054oC to 1282oC at fixed N=3.0, D=1.0 cm, and t =10 min conditions. Emission measurements on the outlet of the burner show that the concentrations of [NOx] are less than 10 ppm and [CO] »40~60 ppm for any value of φ between 0.4 and 0.5, when φ<0.3, [CO] increases largely, indicating that burning is incomplete and unstable near the critical equivalence ratio (φc). HR increases with N but decreases with D, so that extra lean combustion can be performed at larger N and smaller D.
Concerning the preliminary application of the energy saving water heater, we use a long water tube wrapped along the upper product channel of the Swiss roll burner so that the water can be heated via the heat conduction from the high temperature product channel. It is found that this heating arrangement is inefficient. Alternative heating methods have to be considered, such as the direct injection of the exhausted gas (~300oC) into a water tank for developing a compact (20 cm×20 cm×5 cm), high efficiency bath water heater.
關鍵字(中) ★ 超焓燃燒
★ 熱再循環
★ 貧油預混燃燒
關鍵字(英) ★ lean premixed combustion
★ excess enthalpy combustion
★ heat recirculation
論文目次 摘要…………………………………………………………………………I
英文摘要……………………………………………………………………II
誌謝…………………………………………………………………………III
目錄…………………………………………………………………………IV
圖表目錄…………………………………………………………………VII
符號說明……………………………………………………………………XI
第一章 前言………………………………………………………………1
1.1 動機………………………………………………………………….1
1.2 問題所在…………………………………………………….….…...3
1.3 解決提案…………………………………………………………….5
1.4 論文概要………………………………………………….……….6
第二章 文獻回顧…………………………………………………………..9
2.1熱再循環燃燒原理………………………………………………...9
2.2燃料的定義……………………………..……………………...13
2.3貧油預混紊流燃燒…………….…………………….….……….14
2.4火焰穩定的方法………………………………………….………15
2.5熱再循環燃燒技術之應用潛力……………………………..…16
2.5.1熱再循環省能熱水器………………………………………16
2.5.2 捲式燃燒器與觸媒燃燒技術之結合………………………17
2.5.3 電能產生器之研發………………………………………….18
第三章 實驗設備與實驗方法……………………….…………….25
3.1瑞士捲燃燒器實驗系統之建構………………………………….25
3.1.1瑞士捲燃燒器之製作………………………..……………..26
3.1.2 溫度量測系統………………………………………...…..27
3.1.3流量控制系統……………………………………………28
3.1.4預混燃氣混合裝置……………..………………………….28
3.1.5廢氣分析儀之操作…………………….……………………29
3.1.6實驗之燃氣……………………………………………….29
3.2可視化捲式燃燒器之設計………….………………………..30
3.2.1冷流場之觀測………………………….………………...31
3.2.2冷流場觀測方法….……………………………………31
3.2.3瑞士捲燃燒器之熱流場觀測…………………………..32
3.2.4燃燒流場觀測和實驗方法………………….………….33
3.3熱再循環省能熱水器之初步設計……………………………34
第四章 結果與討論……..……………………………………………….44
4.1自製第一代瑞士捲燃燒器……………………………………...44
4.2第二代瑞士捲燃燒器流場觀測結果與討論………………...46
4.2.1冷流場觀測結果與討論…………………………………46
4.2.2燃燒熱流場觀測………….……………………………48
4.3第二代瑞士捲燃燒器之性能參數量測分析……………………...51
4.3.1瑞士捲燃燒器之溫度量測………………………………51
4.3.2熱再循環率估算…………………………………………53
4.3.3瑞士捲燃燒器之貧油可燃極限……………………………57
4.3.4廢氣濃度量測分析…………………………………………57
4.3.5不同燃燒器捲數、流道間距對燃燒性能之影響……..……58
4.4熱再循環燃燒器之應用(省能熱水器初步設計)………….…60
4.5瑞士捲燃燒器壓力效應之探討……………………………62
第五章 結論與未來工作………………………………………………..92
5.1第一代自製瑞士捲燃燒器測試….………………………………92
5.2第二代瑞士捲燃燒器之研究……………………………………92
5.3瑞士捲燃燒器之應用……………………………………….……94
5.4未來工作………………….……………………..…………………94
參考文獻……………………………………………………………………96
參考文獻 Bond, T. C., Noguchi, R. A., Chou, C. P., Mongia, R. K., Chen, J. Y., and Dibble R. W., “Catalytic oxidation of natural gas over supported platinum: flow reactor experiments and detailed numerical modeling”, Proc. Combust. Inst., Vol. 26, pp. 1771-1778 (1996).
Bradley, D., “How fast can we burn ?”, Proc. Combust. Inst., The Combustion Institute, Pittsburgh, Vol. 24, pp. 247-262 (1992).
Chao, Y. C., and Chen, G. B., “Numerical simulation of catalytic ignition of gasified biomass on platinum”, The Third Asia-Pacific Conference on Combustion June 24-27, 2001, Seoul, Korea, pp. 215-218 (2001).
Hardesty, D. R., and Weinberg, F. J., “Converter efficiency in burner systems producing large excess enthalpies”, Combust. Sci. and Tech., Vol. 12, pp. 153-157 (1976).
Jones, A. R., Lloyd, S. A., and Weinberg, F. J., “Combustion in heat exchangers”, Proc. R. Soc. Lond. A., Vol. 360, pp. 97-115 (1978).
Katsuki, M., and Hasegawa, T., “The science and technology of combustion in highly preheated air”, Proc. Combust. Inst., Vol. 27, pp. 3135-3146 (1998).
Kotani, Y., Behbahani H. F., and Takeno, T., “An excess enthalpy flame combustor for extended flow ranges”, Proc. Combust. Inst., Vol. 20, pp. 2025-2033 (1984).
Lloyd, S. A., and Weinberg, F. J., “A burner for mixtures of very low heat content”, Nature, Vol. 251, pp. 47-49 (1974).
Lloyd, S. A., and Weinberg, F. J., “Limits to energy release and utilization from chemical fuels”, Nature, Vol. 257, pp. 367-370 (1975).
Mantzaras, J., Appel, C., and Benz, P., “Catalytic combustion of methane/air mixtures over platinum: homogeneous ignition distances in channel flow configurations”, Proceedings of the Combustion Institute, Vol. 28, pp. 1349-1357 (2000).
Maruta, K., Takeda, K., Sitzki, L., Borer, K., and Ronney, P. D., “Catalytic combustion in microchannel for MEMS power generation”, The Third Asia-Pacific Conference on Combustion June 24-27, 2001, Seoul, Korea, pp. 219-222 (2001).
Min, G., and Rowe, D. M., “Symbiotic, application of thermoelectric conversion for fluid preheating/power generation”, Energy Conversion and Management, Vol. 43, pp. 221-228 (2002).
Mizutani, Y., and Satomura, M. “Combustion of ultra-lean combustible mixtures in a heat recirculation type cyclone furnace system”, Proc. Combust. Inst., Vol. 19, pp. 529-536 (1982).
Pfefferle, L. D., Griffin, A. T., and Winter, M., “The influence of catalytic activity on the ignition of boundary layer flows part I : hydroxyl radical measurements”, Combust. Flame, Vol. 76, pp. 325-338 (1989).
Pfefferle, W. C., Heck, R. M., Carrubba, R. M., and Roberts, G. W., “Catathermal combustion: a new process for low-emission fuel conversion”, ASME Paper 75-WA/Fu-1, (1975).
Schlegel, A., Buser, S. and Benz, P., “NOx formation in lean premixed noncatalytic and catalytically stabilized combustion of propane”, Proc. Combust. Inst., Vol. 25, pp. 1019-1026 (1994).
Schlegel, A., Benz, P., Griffin, T., Weisenstein, W. and Bockhorn, H., “Catalytic stabilization of lean premixed combustion: method for improving NOx emissions”, Combust. Flame, Vol. 105, pp. 332-340 (1996).
Shinoda, M., Tanaka, R., and Arai, N., “Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion”, Energy Conversion and Management, Vol. 43, pp. 1479-1491 (2002).
Shy, S. S., I, W. K., and Lin, M. L., “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Experimental Thermal and Fluid Sci., Vol. 20, pp. 105-114 (2000a).
Shy, S. S., Lin, W. J., and Wei, J. C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. (London) A, Vol. 456, pp. 1997-2019 (2000b).
Shy, S. S., Lin, W. J., and Peng, K. Z., “High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc. Combust. Inst., Vol. 28, pp. 561-568 (2000c).
Sitzki, L., Borer, K., Schuster, E., and Ronney, P. D., “Combustion in microscale heat-recirculating burner”, The Third Asia-Pacific Conference on Combustion June 24-27, 2001, Seoul, Korea, pp. 473-476 (2001a).
Sitzki, L., Borer, K., Wussow, S., Schuster, E., Muruta, K., and Ronney, P. D., “Combustion and power generation in microscale excess enthalpy burners”, 2nd Joint Meeting of the U.S. Section of the Combustion Institute 26th-29th March 2001 Oakland, pp. 1-7 (2001b).
Turns, S. R., “An introduction to combustion: concepts and applications”, (2000).
Weinberg, F. J., “Combustion temperatures: the future”, Nature, Vol. 233, pp. 239-241 (1971).
Weinberg, F. J., “The first half-million years of combustion research and today’s burning problems”, Plenary Lecture, Proc. Combust. Inst., Vol. 15, pp. 1-17 (1975).
Weinberg, F. J., Advanced Combustion Methods, Academic Press, New York, (1986).
Weinberg, F. J., Rowe, D. M., Min, G., and Ronney, P., “On thermoelectric power conversion from heat re-circulating combustion systems”, Submitted to Twenty-ninth Symposium (International) on Combustion (2002).
傅維鑣,張永廉,王清安,“燃燒學”高等教育出版社(1992)。
金志剛,“燃氣測試技術手冊”天津大學出版社(1994)。
指導教授 施聖洋(S. S. Shy) 審核日期 2002-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明