博碩士論文 89323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:44.192.95.161
姓名 許文振(Wen-Chen Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
(Effects of Thermal Radiation on Methane/Hydrogen Combustion in Porous Medium Burner)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 高溫衝擊流熱傳特性之研究
★ 輻射傳遞對磁流體自然對流影響之研究★ 小型燃料電池流道設計與性能分析
★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象★ 氣體擴散層與微孔層對於燃料電池之影響與分析
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
★ 超音速高溫衝擊流之暫態分析★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文以實驗方法與數值模擬探討氫氣、甲烷在多孔性介質燃燒爐中的燃燒現象。實驗依多孔性陶瓷介質排列方式及間隙的有無分為四種爐體,以LabView程式配合資料擷取卡控制各氣體流量、量測火焰溫度、速度與污染物的排放量,而數值模擬則利用熱流計算軟體STAR-CD以二維圓柱座標建構多孔性陶瓷介質燃燒爐,另外加入額外的副程式,以離散座標法來求解輻射熱傳方程式。
文中探討甲烷、氫氣及空氣混合氫在多孔性介質爐中之燃燒現象。討論爐體結構、當量比、流速、氫氣莫爾分率的改變對火焰造成的影響,並探討一氧化碳及氮氧化物對以上各參數之影響;在數值模擬方面以爐體B為爐體模型,進一步探討熱傳導係數、對流熱傳係數、光學厚度、散射比等的改變對燃燒現象之影響。
爐體以三明治結構表現的效能最好,可燃範圍相當寬廣,貧油極限可至當量比0.3以下;間隙的存在會改變火焰穩定的狀態,對爐體D而言,同一火焰速度可存在兩不同的穩定位置;添加氫氣對火焰溫度無明顯變化,但可增加火焰速度,約為自由火焰的6至9倍;對流熱傳係數及氫氣莫爾分率增加會使火焰位置往上游移動;光學厚度增加及散射比接近0.35時,氣體溫度曲線會下降。
摘要(英) The lean combustion of hydrogen/methane mixtures within a highly porous medium has been investigated by experiment and numerical simulation. According to the ceramics arrangement and the gap, four burner structures are built. we use the LabView program to measure the flow rates, flame temperature, the NOx/CO emission. for the numerical simulation. we use STAR-CD to build a model and to compute the solution.
results show that for burners without a gap, the flame tends to stabilize at the upstream half. for the burners with a gap, the flame can stabilized in either the upstream half ot the downstreams one. Using small-pore ceramics blocks at the inlet and exit can cut radiative heat loss and lower the lean limit. Addition of hydrogen in the fuel doesn’’t change the flame temperature greatly. the flame speed, however, increases with the hydrogen fraction in the fuel.
關鍵字(中) ★ 多孔性介質
★ 燃燒
★ 熱輻射
★ 氫氣
關鍵字(英) ★ hydrogen
★ porous medium
★ combustion
★ radiation
論文目次 摘要 ………………………………………………i
誌謝 ………………………………………………ii
目錄 ………………………………………………iii
表目錄 ……………………………………………vi
圖目錄 ……………………………………………vi
符號表 ………………………………………………x
第一章 緒論 ………………………………………………1
1.1 簡介……………………………………………1
1.2 文獻回顧………………………………………3
1.3 本文研究方向…………………………………9
第二章 理論分析………………………………………11
2.1 基本假設……………………………………11
2.2 統御方程式…………………………………12
2.3 邊界條件……………………………………14
2.4 名詞定義……………………………………15
2.5 輻射熱傳方程式……………………………16
第三章 實驗架構與流程………………………………19
3.1 實驗架設……………………………………19
3.2 實驗流程……………………………………22
第四章 數值方法………………………………………24
4.1 爐體模型與格點系統………………………24
4.2 模擬燃燒的方法……………………………24
4.3 解題方法……………………………………25
第五章 實驗之結果與討論…………………………26
5.1 爐體結構之比較……………………………26
5.2 加入氫氣對燃燒現象之影響………………30
5.3 改變各參數對有間隙爐體之燃燒現象的影響
…………………………31
5.4 污染物的排放…………………………33
第六章 數值模型之比較與討論………………35
6.1 火焰速度與當量比…………………………35
6.2 熱傳導係數與對流熱傳係數………………36
6.3 氫氣…………………………………………36
6.4 輻射特性……………………………………37
第七章 結論……………………………………………38
7.1 結論…………………………………………38
參考文獻 …………………………………………………63
附錄一 誤差分析……………………………………69
參考文獻 [ 1] Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
[ 2] Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
[ 3] Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
[ 4] Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
[ 5] Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
[ 6] Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
[ 7] Kotani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp. 1503-1509, 1982.
[ 8] Echigo, R., Yoshizawa, Y. Hamamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media With Internal Heat Generation,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. II, pp. 827-832, 1986.
[ 9] Yoshizawa, Y., Sasaki, K., and Echigo, R.,”Analytical Study of the Structure of Radiation Controlled Flame,” International Journal of Heat and Mass Transfer, Vol. 31, No. 2, pp. 311-319, 1988.
[10] Sathe, S. B., Peck, R. E., and Tong, T.-W., “Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study,” Combustion Science and Technology, Vol. 70, pp. 93-109, 1990.
[11] Sathe, S. B., Peck, R. E., and Tong, T.-W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.
[12] Evans, W. D., Howell, J. R., and Varghese, P. L., “The Stability Limits of Methane Combustion Inside a Porous Ceramic Matrix,” AIAA/ASME Joint Propulsion Conference, Sacramento, California, 1991.
[13] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp. 225-231, 1991.
[14] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
[15] Hsu, P.-F., Matthews, R. D., “The necessity of using detailed kinetics in models for premixed combustion within porous media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993
[16] Hsu, P.-F., “Experimental Study of the Premixed Combustion within the Nonhomogenous Porous Ceramic Media,” HTD-Vol. 328, National Heat Tranfer Conference, Vol. 6, ASME 1996.
[17] C.L. Hackert, J. L Ellzey, and O A. Ezekoye, “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, 1999.
[18] Marc D. Rumminger, D. Hamlin, Robert W. Dibble, “Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability,” Catalysis Today Vol. 47, 1999.
[19] G. Brener, K. Pickenacker, O. Pickenacjer, D. Trmis,k. Wawrzinek, and t. Weber, “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media”, Combustion and Flame, Vol. 123, pp. 201-213, 2000.
[20] Tseng, C.-J., and Li, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 3, pp. 217-224, 2001.
[21] 曾重仁 蔡桓宇, “多孔性介質爐中熱增強燃燒現象之數值模擬,” 力學 第十七卷 第一期 51-61頁,民國90年六月。
[22] Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
[23] Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
[24] Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
[25] Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[26] Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
[27] Karim, G. A., Wierzba, I., and Al-Alousi, Y., “Methane – Hydrogen Mixtures as Fules,” International Journal of Hydrogen Energy, Vol. 21, No. 7, pp. 625-631, 1996.
[28] Karim, G. A., Bade Shrestha, S. O., “Hydrogen as an additive to methane for spark ignition engine applications,” International Journal of Hydrogen Energy, Vol. 24, pp. 577-586, 1999.
[29] Uykur, C., Henshaw, P. F., Ting, D. S.-K. and Barron, R. M., “Effects of addition of electrolysis production on methane / air premixed laminar combustion,” International Journal of Hydrogen Energy, Vol. 26, pp. 265-273, 2001.
[30] Tseng, C.-J., “Effects of hydrogen addition on methane combustion in a porous medium burner,” International Journal of Hydrogen Energy, Vol. 27, pp. 699-707, 2002.
[31] Veziroglu, T. N., International Journal of Hydrogen Energy, Vol. 25, pp. 1143, 2000.
[32] Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, 1972.
[33] Hiatt, J. P., and Hall, M. J., “Pore Scale Turbulence in Porous Ceramic Burners,” 1994 Technical Meeting of the Central States Section of the Combustion Institute, 1994.
[34] Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, Chap. 12, Sec. 2, 1995.
[35] S. Ergun, “Fluid Flow through Packed Columns,” Chem. Eng. Progr. , Vol. 48, No. 2, 1952
[36] Burmeister, L. C., Convective Heat Transfer , John Wiley & Sons, New York, Chap. 10, Sec. 7, 1992
[38] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
[39] Hendricks, T. J., “Thermal Radiative Properties and Modeling of Reticulated Porous Ceramics,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[40] Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, Wiley, New York, 1975.
[41] Hsu, P.-F., “Analytical and Experimental Study of Combustion in Porous Inert Media,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1991.
[42] Kee, R. J., Rupley, F. M. and Miller, J. A., ”The Chemkin Thermodynamic Data Base,” Sandia Report, SAND87-8215B, 1991.
[43] Younis, L. B. and Viskanta, R., “Experimental Determination of the volumetric heat transfer coefficient between stream of air and ceramic foam,” International Journal of Heat and Mass Transfer, Vol. 36, No. 6, pp. 1425-1434, 1993.
[46] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1996.
[47] P. J. Coelho, J. M. Goncalves, and D. N. Trivic, “Modelling of Radiative Heat Transfer in Enclosures with Obstacles,” Int. J. Heat Mass Transfer, Vol. 41, Nos 4-5, 1998.
[48] Nuray Kayakol, Nevin Selcuk, Ian Campbell, Omer L. Gulder, “Performance of Discrete Ordinates Method in a Gas Turbine Combustor simulator,” Experimental Thermal and Fluid Science, Vol. 21, 2000.
[49] Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, Third Ed., Hemisphere Publishing Corp., Washington, DC., 1992.
[51] Hsu, P.-F., and Matthews, R. D., “The Necessity of Using Detailed Kinetics in Models for Premixd Combustion within Porous Media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
[54] High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, New York, 1988.
[55] Touloukian, Y. S. (Ed.), Thermophysical Properties of Matter, Thermophysical Properties Research Center, Purdue University, 1978.
[56] Moffat, R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17, 1988.
[57] Glassman, I., Combustion, Third Edition, Academic Press, Orlando, 1996.
[58] Blint, R. J., “The Relationship of the Laminar Flame Width of Flame Speed,” Combustion Science and Technology, Vol. 49, pp. 79-92, 1986.
指導教授 曾重仁(Chung-Jan Tseng) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明