博碩士論文 89323097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.234.88.196
姓名 陳國仁(Kuo-Jen Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 最佳化嵌合理論於逆向工程與座標量測之研究
(On the Study of the Best Fit Theory to Applications in Reverse Engineering and Coordinate Measurement)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ 螺槳葉片逆向工程CAD模型重建與檢測
★ 電腦輔助紋理影像辨識與點資料視覺化研究★ 渦輪轉子CAD模型重建、多軸加工路徑模擬與誤差分析
★ 電腦輔助皮革紋理雕刻之研究★ 三次元量測軟體發展
★ 航太葉片三次元檢測技術發展★ 鞋楦逆向CAD模型重建技術探討
★ 3D曲面模型網格化之研究★ 航太葉片檢測技術之研究
★ CAD輔助量測路徑規劃研究★ 逆向工程之曲面縫合研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 逆向工程為從實物或樣品,經過量測設備掃描得到點資料,進而重建CAD模型,達到幾何模型重建的一種技術。而透過量測設備掃描點資料、擷取重建CAD模型時所需要的尺寸,與比較點資料與CAD模型間的誤差則是屬於檢測的應用範圍。所以,完整的產品模型重建流程,除了逆向工程中重建CAD模型的相關建構技術,也必須搭配檢測方面的技術應用。在本研究中,所謂的最佳化嵌合理論,指的是如何從兩筆幾何資料中,找到最佳的對應關係,使得兩筆幾何資料能夠達到最佳的配合,而幾何資料可以是點資料、曲線資料與曲面資料。所以,最佳化嵌合理論可說在逆向工程與檢測中的應用非常的廣泛。
逆向工程的相關建構技術,其中最重要的一環則是自由曲面嵌合技術,曲面嵌合代表著透過某些曲面嵌合演算法計算出曲面的控制點,使得曲面與點資料間的誤差能夠最小化。而點資料的取得,目前大部分都是透過非接觸式量測設備掃描得到,所以就目前逆向工程中大部分的點資料均為亂點資料。所以,在本研究中發展出四種針對亂點資料進行曲面建構的技術,其中有曲面貼覆、大面嵌合、剪裁曲面嵌合與井字形邊界輪廓拘束性嵌合,最後並透過球鞋空氣袋的範例,來整合介紹上述四個演算法。
而最佳化嵌合理論於檢測上的應用,在本研究中則是著重在如何使得量測點資料與CAD模型間的誤差能夠最小化,其中量測點資料的取得又可分為使用接觸式與非接觸式量測設備兩種。接觸式量測設備指的是CMM,在檢測的過程中,CMM的座標系統常常必須與CAD模型座標系統一致,但如果工件上無法提供足夠的幾何特徵,如:平面、圓柱與球面等,就無法使用傳統的3-2-1法來建立座標系統。另外對非接觸式量測設備而言,掃描的過程中,並不需要建立座標系統,就可以得到大量的點資料,往往這些點資料的座標系統與其CAD模型座標系統都會有位置上的錯置關係,此時如果要檢視某個已定義剖面的誤差時,就必須將點資料移動到CAD模型上,亦即將點資料的座標系統移動到符合CAD模型的座標系統上,讓兩筆幾何資料間的誤差能夠最小化。所以在本研究中,針對接觸式與非接觸式量測設備,發展出兩種座標定位的方法與流程,可以找出最佳化的座標轉換矩陣,來解決上述的問題,最後並透過一些範例與測試數據,來驗證演算法的穩定性與流程上的可行性。
摘要(英) Reverse engineering is a technique of using the scanning machine to obtain the digitized points and reconstructing the CAD model for an existing object or prototypes. The applications of inspection include acquiring the digitized points, getting the dimensions needed for constructing the CAD model and comparing the deviations between the points and the CAD model. Therefore, a complete CAD reconstructing process of products requires the combination of reverse engineering and inspection. In this study, the best fitting algorithm means finding the optimum relation between two different geometric data, which could be points, curves and surfaces. Thus, the best fitting algorithm can extensively be applied in reverse engineering and inspection.
The surface fitting is an important technique in reverse engineering. It calculates the control points of a surface by using some algorithms to minimize the errors between the points and the surface. At present, the digitization of an object is generally via optical scanning machines, which yields random point data. Hence, there are four algorithms developed in this study for different applications. They are surface wrapping, extended surface fitting, trimmed surface fitting and constrained boundary surface fitting. Several examples are presented to illustrate the feasibility of each algorithm. An air bag is finally used to demonstrate the integrated application.
The application of the best fitting algorithm in inspection focuses on minimizing the deviations between the measurement points and the CAD model. The measurement points come from a contact or non-contact scanning machine. The contact scanning machine usually means the CMM. The part coordinate in the inspection should ideally be the same as that of the CAD model. However, if there are not enough features such as planes, cylinders and spheres, it can not use 3-2-1 method to build the part coordinate. For the non-contact scanning machine, it doesn’t need the setting of the part coordinate before the digitization is performed. Therefore, the coordinates of the digitized points and the CAD model are usually mis-matched. When we want to inspect the deviations of some defined sections, we must translate the coordinate of the points to that of the CAD model, and minimize the errors between them. Thus, two localization algorithms are developed in this study for contact and non-contact scanning machines. It can calculate the optimal coordinate transformation matrix to minimize the deviations between the points and the CAD model. Several examples are presented also to demonstrate the feasibility of the proposed localization algorithms.
關鍵字(中) ★ 曲面嵌合
★ 座標定位
關鍵字(英) ★ surface fitting
★ coordinate registration
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-1-1 量測技術 3
1-1-2 點資料處理 5
1-1-3 曲線或曲面建構 7
1-1-4 CAD模型建構 9
1-2 文獻回顧 10
1-2-1 曲面嵌合技術 11
1-2-2 量測資料座標定位 13
1-3 研究目的與方法 15
1-3-1 亂點資料曲面嵌合 15
1-3-2 座標量測定位 17
1-4 論文架構 23
第二章 曲面嵌合理論基礎 25
2-1 前言 25
2-2 最小平方曲面嵌合 26
2-3 平滑函數 33
2-4 SDM曲面嵌合法 39
第三章 亂點資料曲面嵌合 47
3-1 前言 47
3-2 曲面貼覆 49
3-2-1 曲面貼覆流程介紹 49
3-2-2 全區域控制點調整 53
3-2-3 局部區域控制點調整 54
3-3 大面嵌合 57
3-3-1 無邊界平面嵌合 60
3-3-2 平面邊界的決定 61
3-3-3 建構基本平面 65
3-4 剪裁曲面嵌合 67
3-5 井字形邊界輪廓拘束性嵌合 71
第四章 亂點資料曲面嵌合範例 78
4-1 前言 78
4-2 SDM與最小平方嵌合法比較 78
4-3 曲面貼覆範例說明 80
4-4 大面嵌合範例說明 80
4-5 空氣袋應用範例說明 87
第五章 最佳化座標定位技術發展 92
5-1 前言 92
5-2 SVD座標定位法 93
5-3 CMM多點座標疊代 96
5-3-1 粗定位 96
5-3-2 精定位 99
5-3-3 量測路徑規劃 100
5-3-4 三點補償法 103
5-4 掃描點資料對CAD模型座標疊代 108
5-4-1 粗定位 109
5-4-2 精定位 111
第六章 範例及應用 114
6-1 前言 114
6-2 CMM多點座標疊代驗證範例說明 114
6-3 CMM多點座標疊代實際範例說明 118
6-4 掃描點資料對CAD模型座標疊代範例說明 130
第七章 結論與未來展望 135
7-1 結論 135
7-2 未來展望 137
參考文獻 139
參考文獻 [1] 金濤、童水光、顏永年,逆向工程技術,機械工業出版社,北京 (2003)
[2] 翁文德,逆向工程之曲面模型重建技術發展,中央大學機械工程研究所博士論文 (1999)
[3] B. Sarkar and C. H. Menq, “Smooth-Surface Approximation and Reverse Engineering”, Computer-Aided Design, Vol. 23, No. 9, pp. 623-628 (1991)
[4] P. N. Chivate and A. G. Jablokow, “Solid-Model Generation from Measured Point Data”, Computer-Aided Design, Vol. 25, No. 9, pp. 587-600 (1993)
[5] C. Bradley, G. W. Vickers and M. Milroy, “Reverse Engineering of Quadratic Surfaces Employing Three-dimensional Laser Scanning”, Proc. Instn. Mech. Engrs., Vol. 208, pp. 21-28 (1994)
[6] R. J. Abella, J. M. Daschbach and R. J. McNichols, “Reverse Engineering Industrial Applications”, Computers Industrial Engineering, Vol. 26, No. 2, pp. 381-385 (1994)
[7] J. Hoschek, “Spline Approximation of Offset Curve”, Computer-Aided Design, Vol. 5, pp. 33-40 (1988)
[8] D. F. Rogers and N. G. Fog, “Constrained B-spline Curve and Surface Fitting”, Computer-Aided Design, Vol. 21, No. 10, pp. 87-96 (1989)
[9] B. Sarkar and C. H. Menq, “Parameter Optimization in Approximation Curves and Surfaces to Measurement Data”, Computer Aided Geometric Design, Vol. 8, pp. 267-290 (1991)
[10] J. Y. Lai and C. Y. Liu, “Reverse Engineering of Composite Sculptured Surfaces”, International Journal of Advanced Manufacturing Technology, Vol. 12, pp. 180-189 (1996)
[11] X. Ye, T. R. Jackson and N. M. Patrikalakis, “Geometric Design of Functional Surface”, Computer-Aided Design, Vol. 28, No. 9, pp. 741-752 (1996)
[12] W. Ma and J. P. Kruth, “Parameterization of Randomly Measured Points for Least Squares Fitting of B-spline Curves and Surfaces”, Computer-Aided Design, Vol. 27, No. 9, pp. 663-675 (1995)
[13] W. Tiller, “Rational B-splines for Curve and Surface Representation”, IEEE Comput. Graph. and Appl., Vol. 3, No. 6, pp. 61-69 (1983)
[14] C. Woodward, “Cross-Sectional Design of B-spline Surfaces”, Comput. And Graph., Vol. 11, No. 2, pp. 193-201 (1987)
[15] C. Woodward, “Skinning Techniques for Interactive B-spline Surface Interpolation”, Computer-Aided Design, Vol. 20, No. 8, pp. 441-451 (1988)
[16] M. Hohmeyer and B. Barsky, “Skinning Rational B-spline Curves to Construct an Interpolatory Surface”, Comput. Vis., Graph. And Image Processing: Graphical Models and Image Processing, Vol. 53, No. 6, pp. 511-521 (1991)
[17] F. Klok, “Two Moving Coordinate Frames for Sweeping Along a 3D Trajectory”, Computer Aided Geometric Design, Vol. 3, pp. 217-229 (1986)
[18] B. K. Choi and C. Lee, “Sweep Surfaces Modeling via Coordinate Transformations and Blending”, Computer-Aided Design, Vol. 22, No. 2, pp. 87-96 (1990)
[19] V. Akman and A. Arslan, “Sweeping with All Graphical Ingredients in a Topological Picturebook”, Comput. And Graph., Vol. 16, No. 3, pp. 273-281 (1992)
[20] W. Bronsvoort and J. Waarts, “A Method for Converting the Surface of a Generalized Cylinder into a B-spline Surface”, Comput. And Graph., Vol. 16, No. 2, pp. 175-178 (1992)
[21] S. A. Coons, “Surfaces for Computer-Aided Design of Space Forms”, MAC-TR-41, MIT (1967)
[22] L. Piegl and W. Tiller, The NURBS Book, Second Edition, Springer, (1995)
[23] W. Ma and P. He, “B-spline Surface Local Updating with Unorganized Points”, Computer-Aided Design, Vol. 30, No. 11, pp. 853-862 (1998)
[24] V. Weiss, L. Andor, G. Renner and T. Varady, “Advanced Surface Fitting Techniques”, Computer Aided Geometric Design, Vol. 19, No. 1, pp. 19-42 (2002)
[25] H. Pottmann and S. Leopoldseder, “A Concept for Parametric Surface Fitting Which Avoids the Parametrization Problem”, Computer Aided Geometric Design, Vol. 20, No. 6, pp. 343-362 (2003)
[26] H. Yang, W. Wang and J. Sun, “Control Point Adjustment for B-spline Curve Approximation”, Computer-Aided Design, Vol. 36, No. 7, pp. 639-652 (2004)
[27] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner and W. Wang, “Industrial Geometry: Recent Advances and Applications in CAD”, Computer-Aided Design, Vol. 37, No. 7, pp. 751-766 (2005)
[28] W. Boehm, “Inserting New Knots into B-spline Curves”, Computer-Aided Design, Vol. 12, No. 4, pp. 199-201 (1980)
[29] L. Piegl, “Modifying the Shape of Rational B-spline. Part 1: Curves”, Computer-Aided Design, Vol. 21, No. 8, pp. 509-518 (1989)
[30] W. Boehm and H. Prautzsch, “The Insertion Algorithm”, Computer-Aided Design, Vol. 17, No. 2, pp. 58-59 (1985)
[31] W. Boehm, “On the Efficiency of Knot Insertion Algorithms”, Computer Aided Geometric Design, Vol. 2, Nos. 1-3, pp. 141-143 (1985)
[32] T. Lyche, E. Cohen and K. Morken, “Knot Line Refinement Algorithms for Tensor Product Splines”, Computer Aided Geometric Design, Vol. 2, Nos. 1-3, pp. 133-139 (1985)
[33] W. Tiller, “Knot-Removal Algorithms for NURBS Curves and Surfaces”, Computer-Aided Design, Vol. 24, No. 8, pp. 445-453 (1992)
[34] H. Prautzsch, “Degree Elevation of B-spline Curves”, Computer Aided Geometric Design, Vol. 1, No. 1, pp. 193-198 (1984)
[35] H. Prautzsch and B. Piper, “A Fast Algorithm to Raise the Degree of Spline Curves”, Computer Aided Geometric Design, Vol. 8, pp. 253-265 (1991)
[36] L. Piegl and W. Tiller, “Software Engineering Approach to Degree Elevation of B-spline Curves”, Computer-Aided Design, Vol. 26, No. 1, pp. 17-28 (1994)
[37] L. Piegl and W. Tiller, “Algorithm for Degree Reduction of B-spline Curves”, Computer-Aided Design, Vol. 27, No. 2, pp. 101-110 (1995)
[38] J. Cho, T. W. Kim and K. Lee, “Surface Fairing with Boundary Continuity Based on the Wavelet Transform”, ETRI Journal, Vol. 23, No. 2 (2001)
[39] G. Farin and N. Sapidis, “Curvature and the Fairness of Curves and Surfaces”, IEEE Computer Graphics and Applications, Vol. 9, No. 2, pp. 52-57 (1989)
[40] T. I. Vassilev, “Fair Interpolation and Approximation of B-splines by Energy Minimization and Points Insertion”, Computer-Aided Design, Vol. 28, No. 9, pp. 753-760 (1996)
[41] J. Kjellander, “Smoothing of Cubic Parametric Splines”, Computer-Aided Design, Vol. 15, No. 3, pp. 175-179 (1983)
[42] J. F. Poliakoff, “An Improved Algorithm for Automatic Fairing of Non-Uniform Parametric Cubic Splines”, Computer-Aided Design, Vol. 28, No. 1, pp. 59-66 (1996)
[43] O. Faugeras and M. Hebert, “The Representation, Recognition and Locating of 3-D Objects”, International Journal of Robotics, Vol. 5, No. 3, pp. 27-56 (1986)
[44] K. S. Arun, T. S. Huang and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 5, pp. 698-700 (1987)
[45] P. J. Besl and D. McKay, “A Method for Registration of 3-D Shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256 (1992)
[46] T. Masuda and N. Yokoya, “A Robust Method for Registration and Segmentation of Multiple Range Images”, Computer Vision and Image Understanding, Vol. 61, No. 3, pp. 295-307 (1995)
[47] R. Benjeman and F. Schmitt, “Fast Global Registration of 3D sample Surfaces Using a Multi-Z-Buffer Technique”, Proceeding of International Conference on 3-D Digital Imaging and Modeling, pp. 113-120 (1997)
[48] T. Masuda, “A Unified Approach to Volumetric Registration and Integration of Multiple Range Images”, Proceeding of International Conference on Pattern Recognition, Vol. 2, pp. 977-981 (1998)
[49] Y. Chen and G. Medioni, “Object Modeling by Registration of Multiple Range Images”, Image and Vision Computing, Vol. 10, No. 3, pp. 145-155 (1992)
[50] H. Hugli and C. Schutz, “Geometric Matching of 3D Objects : Assessing the Range of Successful Initial Configurations”, Proceeding of International Conference on 3-D Digital Imaging and Modeling, pp. 101-106 (1997)
[51] C. Schutz, T. Jost and H. Hugli, “Multi-Feature Matching Algorithm for Free-Form 3D Surface Registration”, Proceeding of International Conference on Pattern Recognition, Vol. 2, pp. 982-984 (1998)
[52] C. S. Chen, Y. P. Hung and J. B. Cheng, “A Fast Automatic Method for Registration of Partially-Overlapping Range Images”, Proceeding of International Conference on Computer Vision, pp. 242-248 (1998)
[53] C. S. Chen, Y. P. Hung, J. B. Cheng and M. Ouhyoung, “Registration and Integration of Multi-View Range Images”, 電腦視覺、圖學暨影像處理研討會論文集, pp. 376-383 (1997)
[54] H. T. Yau, C. Y. Chen and R. G. Wilhelm, “Registration and Integration of Multiple Laser Scanned Data for Reverse Engineering of Complex 3D Models”, International Journal of Production Research, Vol. 38, No. 2, pp. 269-285 (2000)
[55] 陳俊諺,利用3D多重掃描資料建構多面體架構之實體模型,中正大學機械工程研究所碩士論文 (2000)
[56] S. A. Nene and S. K. Nayar, “A Simple Algorithm for Nearest Neighbor Search in High Dimensions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 9, pp. 989-1003 (1997)
[57] S. A. Nene and S. K. Nayar, “Closest Point Search in High Dimensions”, Proceeding of Computer Vision and Pattern Recognition 96, pp. 859-865 (1996)
[58] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge, New York (1992)
[59] S. J. Leon, Linear Algebra with Applications, Fourth Edition, Prentice Hall, New York (1994)
[60] 謝炎錚,CAD輔助量測路徑規劃研究,中央大學機械工程研究所碩士論文 (2001)
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明