博碩士論文 89323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.210.201.170
姓名 黃正義(Henry Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 時頻分析於機械動態訊號之應用
(The application of time-frequency analysis on mechanical dynamic signals)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ VKF階次追蹤之探討與應用
★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式★ TFT-LCD衝擊模擬分析及驗證研究
★ TFT-LCD掉落模擬分析及驗證研究★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計
★ 主動式火箭發射噪音控制使用可變因子演算法★ 醫學/動態訊號處理於ECG之應用
★ 光碟機之動態研究與適應性尋軌誤差改善★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計
★ 醫用近紅外光光電量測系統之設計與驗証★ 車用DVD光碟機之適應性聚焦伺服控制實現與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主旨為發展並實現平滑維勒、Choi-Williams分佈與錐形時頻分佈等時頻分析演算法,以改善短時間傅立葉變換無法同時具有優良時間及頻率解析度的缺點,並能減少維勒分佈於時頻面上的干涉鬼影。研究中分別以模擬訊號探討個別時頻分析演算法的特性及優缺點;運用時頻分析法能夠精確解析時變或暫態非穩態訊號分量的特性,應用於傳動元件試驗平台的動態訊號分析上,以計算傳動元件的特徵轉速與時頻分析結果對照的方法,可得知試驗平台的振動與噪音的來源以及傳動元件運轉特性;對於電磁式磁粉煞車作動以致試驗平台停止運轉瞬間,對試驗平台產生衝擊,造成磁粉煞車端有上移的現象,以錐形時頻分析法可詮釋此現象。此外,研究中應用時頻分析於水下聲學訊號探討,透過水下麥克風(hydrophone)量測水下暫態非穩態訊號,包括水中、水面航具及海流等之音響,進行種類鑑別。
摘要(英) The study aims are developing and implementing time-frequency distribution (TFD) techniques, including the smoothed Wigner-Ville, Choi-Williams and Cone-kernel distributions, to improve time-frequency resolution that spectrogram cannot possess simultaneously and eliminate interferences resulting from the cross terms in a Wigner-Ville distribution as well. Several synthetic signals have been designed to investigate these TFDs’ properties. We utilize the excellences of these TFDs in analyzing the time-variant or transient signals to analyze the mechanical dynamic signal from test-rig and compare with the rotational speed of transmission components to get the cause of vibration and noise on test-rig and the characteristics of transmission components. Also, by analyzing dynamic signal on the electromagnetic powder brake (EPB), we can know that EPB generate an impulse on test-rig at the moment of full stop that make test-rig shake upward around EPB. In addition, we apply TFA to analyze t underwater acoustic signals by using hydrophone to measure transient and nonstationary signal including acoustics of vessels or ocean current to classify targets.
關鍵字(中) ★ 時頻分析
★ 時頻分佈
★ 機械動態訊號分析
關鍵字(英) ★ time-frequency analysis
★ time-frequency distribution
★ mechanical dynamic signal analysis
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 VII
表 目 X
第一章 緒論 1
1.1 研究動機 1
1.2 相關文獻回顧 3
1.3 本文研究範疇 5
第二章 時頻分佈函數 6
2.1 基本概念 6
2.1.1 解析訊號(analytic signal) 7
2.1.2 測不準原理 8
2.2 短時間傅立葉變換 10
2.2.1 離散短時間傅立葉變換 10
2.3 Wigner-Ville 分佈 12
2.3.1 仿維勒分佈 15
2.3.2 平滑維勒分佈 16
2.4 Choi-Williams 分佈 19
2.5 錐形時頻分佈函數 20
2.5.1 有限時間支撐特性 20
2.5.2 錐形時頻分佈函數的定義 24
2.5.3 性質 25
2.6 模擬訊號驗證 26
2.6.1 模擬訊號的種類及分析條件的設定 26
2.6.2 分析結果與討論 28
2.7 Labview 環境下的模擬訊號分析 35
2.8 結語 36
第三章 時頻分析應用於機械動態特徵分析 39
3.1 試驗平台與分析操作環境的介紹 39
3.1.1 試驗平台簡介 40
3.1.2 Labview環境下的資料擷取與分析 43
3.2 試驗平台的振動與噪音 44
3.2.1 實驗狀態 44
3.2.2 各元件運轉特性 46
3.2.3 試驗平台於不同負載的振動及噪音 48
3.3 傳動元件轉速計算 50
3.3.1 軸頻率及其諧頻 50
3.3.2 皮帶輪異音頻率 52
3.3.3 齒輪嚙合頻率及其諧頻 54
3.4 電磁式磁粉煞車暫態現象的探討 54
3.4.1 磁粉煞車的作用原理 56
3.4.2 實驗狀態設定 56
3.4.3 實驗結果分析 57
3.5 結語 60
第四章 時頻分析於引擎噪音分析之應用 62
4.1 汽油引擎的噪音特性 62
4.1.1 汽缸壓力變化所引起的噪音 64
4.1.2 活塞往復運動所引起的噪音 64
4.2 水下音響訊號分析 65
4.2.1 初步分析 65
4.2.2 時頻分析進階探討 66
4.3 水下複合音響分析 69
4.4 結語 72
第五章 結論與未來展望 73
參考文獻 75
參考文獻 2. E. Wigner, ”On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 41, pp. 749- 759, 1932
3. L. Cohen, ”Generalized phase-space distribution function, ” Jour. Math. Phys., vol. 7, pp. 781- 786, 1966.
4. P. Flandrin, ”Some features of time-frequency representations of multicomponent signals,” Proc. IEEE 1981 Internat. Conf. Acoust. Speech Signal Processing (ICASSP-84), San Diego, C A, March 1984, pp. 41B4.1- 41B.4.4.
5. P. Flandrin, and W. Martin, ”Pseudo-Wigner estimators for the analysis of nonstationary processes,” Proc. IEEE Spectr. Est. Workshop II, Tampa, FL, pp. 181- 185, November 1983.
6. F. Hlawatsch, ”Duality and classification of bilinear time-frequency signal representations,” IEEE Trans. Signal Process, Vol. 39, No. 7, July 1991, pp. 1564- 1574
7. H. I. Choi and W. J. Williams, ”Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Trans. On Acoust, Speech, Signal Processing, vol. 37, pp. 862- 871, 1989.
8. J. Jeong, and W. Williams, ”A new formulation of generalized discrete-time time-frequency distributions,” Proc. IEEE ICASSP-91, pp. 3189- 3192, 1991.
9. G. S. Cunningham and W. J. Williams. ”High-Resolution Signal Synthesis for Time-Frequency Distributions, ” Proc. IEEE ICASSP – 93, vol. 4, pp. 400- 403, 1993.
10. Y. Zho, L. E. Atlas and R. J. Marks, “The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, no. 7, pp. 1084- 1091, July 1990.
11. F. Hlawatsch; Manickam, Thulasinath G.; Urbanke, Rüdiger L.; Jones, William, “Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison,” Signal Processing, vol. 43, pp. 149- 168, 1995.
12. M. C. Pan, “ Non-stationary Time-Frequency Analysis for Condition Monitoring of Mechanical Systems”, Doctoral Thesis of Katholieke University Leuven., 1996.
13. M. C. Pan, P. Sas and H. Van Brussel, “Non-stationary Time -Frequency Analysis for Machine Condition Monitoring”, Proceeding of 3rd IEEE Signal Processing Society International Symposium on Time-Frequency and Time-Scale Analysis, pp. 477- 480, 1996.
14. M. C. Pan,and P. Sas, ”Transient Analysis on Machinery Condition Monitoring,” Proceedings of 3rd International Conference on Signal Processing, pp. 1723- 1726, 1996.
15. N. Gache, P. Chevret, and V. Zimpfer, “Target classification near complex interfaces using time-frequency filters,” Proceedings of the 1998 IEEE International Conference on vol. 4 pp. 2433 –2436, 1998.
16. T. Brotherton, T. Pollard, R. Barton, A. Krieger, L. Marple, “Application of time-frequency and time-scale analysis to underwater acoustic transients” Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 513 –516, 1992.
17. L. Cohen, Time-Frequency Analysis, Prentice Hill Inc., 1995.
18. T. A. C. M. Classen and W. F. G.. Mecklenbräuker, “The Wigner distribution- A tool for time-frequency signal analysis- Part I: Continuous time signals,” Phillips Jour. Of Research., vol. 35(3), pp. 217- 250, 1980.
19. T. A. C. M. Classen and W. F. G.. Mecklenbräuker, “The Wigner distribution- A tool for time-frequency signal analysis- Part II: Discr- ete Time Signals, ” Phillips Jour. Of Research., vol. 35(4/5), pp. 276- 300,
20. T. A. C. M. Classen and W. F. G.. Mecklenbräuker, “The Wigner distribution- A tool for time-frequency signal analysis- Part III: Relation with other time-frequency signal transformations, ” Phillips Jour. Of Research., vol. 35(4/5), pp. 276- 300,
21. Cornelis P. Janse and J. M. Kaizer, “Time-frequency distributions of loudspeakers: the application of the Wigner distribution,” J. Audio Eng. Soc., vol. 31, no. 4 April 1983.
22. L. Cohen, “Time-Frequency Distributions- a Review,” Proceedings of the IEEE, vol. 77, no. 7, pp. 941- 981, July 1989.
23. H. I. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Trans. On Acoust., Speech, Signal processing, vol. 37, pp. 862-871, 1989.
24. J. Jeong and W. J. Williams. “Alias-Free Generalized Discrete-Time Time-Frequency Distributions,” IEEE Trans. On Signal Processing, vol. 40, pp. 2757- 2765, 1992.
25. G. S. Cunningham and W. J. Williams. “High-Resolution Signal Synthesis for Time-Frequency Distributions,” Proc. IEEE ICASSP- 93, vol. 4, pp. 400- 403, 1993.
26. S. Oh and R. J. Marks, “Some properties of the generalized time frequency representation with cone-shaped kernel,” IEEE Trans. On Signal Processing, vol. 40, no. 7, pp. 1735- 1745, July 1992.
27. P. J. Loughlin, J. W. Pitton and L. E. Atlas, “Bilinear time-frequency representations: New insights and properties,” IEEE Trans. On Signal Processing, vol. 41, no. 2, pp. 750-767, Feb. 1993.
28. J. Jeong and W. J. Williams, “Kernel design for reduced interference distributions,” IEEE Trans. On Signal Processing, vol. 40, no.2, pp. 402- 412, Feb. 1992.
29. Steven M. Kay, Modern Spectral Estimation: Theory and Application, Prentice-Hall, Englewood Cliffs, New Jersey,1988.
30. John G.. Proakis, Dimitris G. Manolakis, Digital Signal Processing, 3rd Ed, Prentice Hill Inc., 1996.
31. B. Samimy, and G.. Rizzoni, “Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection,” Proceedings of the IEEE, vol. 84 pp. 1330- 1343, Sept. 1996.
32. M. Chiollaz and B. Favre, “Engine noise characterization with Wigner-Ville time-frequency analysis,” Mechan. Syst. and Signal Process., vol. 7, pp. 375- 400, Sept. 1993.
33. 張閒達, 保錚, “非平穩信號分析與處理,” 國防工業出版社, 1998.
34. 林立義, “應用可適性時頻分佈函數實現非穩態訊號偵測,” 國立台灣海洋大學電機工程學系碩士論文, 1997.
35. 蕭子健, 周森益, 鄭博修, 林佩瑜, 黃欽章, “Labview分析篇,” 高立圖書有限公司, 2000.
36. 林士傑, “電動機車異音源之分析研究,” 國立中央大學機械工程研究所碩士論文, 2001.
37. 黃靖雄, “現代汽車引擎,” 全華科技圖書股份有限公司, 1998.
38. 肖國有, 屠慶平, “聲信號處理及其應用,” 西北工業大學出版社, 1994.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明