博碩士論文 89323129 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.231.228.109
姓名 黃紀翔(Chi-Hsiang Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低溫倉儲噴流系統之實驗量測與數值模擬研究
(Measurement and Simulation of Jet System in the Cold Store)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 壓縮微管流的熱流分析★ 微小圓管的層流及熱傳數值模擬
★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應★ 微管道電滲流物理特性之數值模擬
★ 電滲泵內多孔介質微流場特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣屬於副熱帶海島型氣候,終年氣候非常溼熱,對於農產品的新鮮度會造成非常大的影響,所以這些不論是在製造、倉儲、運輸、銷售、消費均需保持在低溫狀態下以維持生鮮度。而冷凍食品的品質優劣與冷凍倉儲內的氣流場及溫度場有著密不可分的關係,因此如何描述和預測冷凍倉儲內的流場便顯得相當重要。
本研究是以數值模擬與實驗量測兩種方法來探討大型倉儲(尺寸為21m×2.45m×5.0m)的流場特性,而實驗是將先前之風管系統改成噴流系統,利用熱敏電阻式風速計(Thermistor-based anemometer)及熱電偶溫度計(Thermocouple)來量測倉儲中的氣流風速與溫度變化。結果發現大型倉儲噴流系統出風口的高風速及紊流現象,可以提高氣流混合效應,達到較好的均溫性。另外針對不同噴流流量、貨物堆疊方式及貼壁與否等條件,進行實驗,結果顯示改變傳統貨物堆疊方式(水平堆疊),配合噴流拋距特性,以垂直堆疊方式(逐漸往噴流下游增加貨物)為最適合的堆疊方式;最後並定義此低溫倉儲之噴流系統最佳控制條件。再以套裝軟體PHOENICS進行數值模擬,並與實驗結論互相印證,兩者比較結果在定性上吻合,但定量比較仍有差異。
此研究的結論對大型倉儲的流場分析具有很大的意義,更期望此研究可以作為往後低溫倉儲領域設計與使用上的參考依據。
摘要(英) simulation and measurement in a cold store with jet flow. we use some sensor, which is velocity sensor and the other is thermalcouple, the flow field and temperature is good meet.
關鍵字(中) ★ 低溫倉儲
★ 噴流系統
★ 流場分析
★ 數值模擬
★ PHOENICS
關鍵字(英) ★ Cold store
★ Jet System
★ PHOENICS
★ simulation
★ Flow Model
論文目次 摘要…………………………………………………………………… i
目錄………………………………………………………………….... ii
表目錄……………………………………………………………….... iv
圖目錄……………………………………………………………….... v
符號說明……………………………………………………………… viii
第一章 前言…………………………………………….………….. 1
1.1 研究動機…………………………………………………………. 1
1.2 文獻回顧…………………………………………………………. 2
1.2.1實驗量測分析………………………………………………... 3
1.2.2數值模擬分析………………………………………………... 6
1.3 研究目的…………………………………………………………. 11
第二章 紊流與數值模擬………….…………………………….. 12
2.1 紊流流場…………………………………………………………. 12
2.2 模式………………………………………………………… 13
2.3 數值方法…………………………………………………………. 14
2.3.1對流項與擴散項的差分…………………………………….. 15
2.3.2 SIMPLE法則………………………………………………... 16
2.4 模擬軟體………………………………………………………… 17
2.4.1 PHOENICS介紹……………………………………………. 17
2.4.2 數值模擬之流場模型描述………………………………… 18
2.4.3 邊界條件之設立……………………………………………. 19
第三章 實驗方法…………………………………………………. 23
3.1 實驗設備………………………………………………………… 23
3.1.1 實驗本體……………………………………………………. 23
3.1.2 量測儀器……………………………………………………. 25
3.2 實驗步驟………………………………………………………… 26
第四章 結果與討論………………………………………………. 40
4.1 流場及溫度場量測結果………………………………………… 40
4.1.1 不同堆疊方式………………………………………………. 41
4.1.2 噴流系統與風管系統比較…………………………………. 44
4.1.3 拋距現象與氣流短路………………………………………. 46
4.1.4 貼壁與否與康達效應………………………………………. 47
4.1.5 堆疊與節省能源之相關性…………………………………. 48
4.1.6 未貼壁,調節閥角度的影響………………………………. 49
4.1.7 溫度場探討…………………………………………………. 50
4.2 模擬與實驗結果比較………………………………………….... 52
4.2.1 貼壁時,空庫與滿庫堆疊情況…………………………… 52
4.2.2 未貼壁時,滿庫堆疊情況………………………………… 55
4.2.3 誤差比較及說明…………………………………………… 56
第五章 結論與建議…………………………...…………………. 86
參考文獻……………………………………………..……………... 89
參考文獻 Amos, N. D., Cleland, D. J., Banks, N. H., “Effect of pallet stacking arrangement on fruit cooling rates within forced-air pre-coolers,” Cold chain refrigeration equipment by design, Nov., 1993, pp. 232-241.
Cleland, A. C., “Simulation of industrial refrigeration plants under variable load conditions,” Int. J. of Refrig., Vol. 6, Jan., 1983, pp. 11-19.
Cortella, G., Manzan, M., and Comini, G., “CFD simulation of refrigerated display cabinets,” Int. J. of Refrig., Vol. 24, 2001, pp. 250-260.
Daudin, J. D., Van Gerwen, and R. J. M., “Air circulation : how to cope with this critical point,” New Developments in Meat Refrigeration, ECCE/AMST/I. I. R. Chillers, 1996, pp. 30-37.
Gan, G., “Evaluation of room air distribution systems using computational fluid dynamics,” Energy and Buildings, Vol. 23, 1995, pp. 83-93.
Heldman, D. R., Hall, C. W., Hedrick, T. I., “Influence of ventilation rate on air turbulence in food-packaging areas,” TRANSACTIONS of the ASAE, 1969.
Heldman, D. R., “Relationships between aerosol dispersion and air turbulence in a food packaging area,” TRANSACTIONS of the ASAE, 1970.
Hoang, M. L., Verboven, P., Baerdemaeker, J. D., and Nicolai, B. M., “Analysis of air flow in a cold store by means of computational fluid dynamics,” Int. J. of Refrig., Vol. 23, 2000, pp. 127-140.
Hu, Z., and Sun, D. W., “Effect of fluctuation in inlet airflow temperature on CFD simulation of air-blast chilling process,” J. of Food Eng., Vol. 48, 2001, pp. 311-316.
Ince, N. Z., and Launder, B. E., “Three-dimensional and heat-loss effects on turbulent flow in a nominally two-dimensional cavity,” Int. J. Heat and Fluid Flow, Vol. 16, 1995, pp. 171-177.
Jolly, P. G., Tso, C. P., Wong, Y. W., and Ng, S. M., “Simulation and measurement on the full-load performance of a refrigeration system in a shipping container,” Int. J. of Refrig., Vol. 23, 2000, pp. 112-126.
Laslandes, S., Sacré, C., “Transport of particles by a turbulent flow around an obstacle- a numerical and a wind tunnel approach,” J. of Wind Eng., Vol. 74-76, 1998, pp. 577-587.
Mathews, E. H., and Claassen, D. T., “Problems with the T-method,” Building and Emironment, Vol. 33, 1998, pp. 173-179.
Mirade, P. S., and Daudin, J. D., “A new experimental method for measuring and visualizing air flow in large food plants,” J. of Food Eng., Vol. 36, 1998, pp. 31-49.
Moueddeb, K. E., Barrington, S., and Barthakur, N., “Perforated ventilation ducts: Part 2, Validation of an Air Distribution Model,” Silsoe Research Institute, Vol. 98, 1997, pp. 29-37.
Moureh, J., and Derens, E., “Numerical modeling of the temperature increase in frozen food packaged in pallets in the distribution chain,” Int. J. of Refrig., Vol. 23, 2000, pp. 540-552.
Neale, M. A., Lindsay, R. T., Messer, H. J., “Cooling produce in large pallet-based boxes,” Journal Agricultural Engineering Res., Vol. 20, 1975, pp. 235-243.
Neale, M. A., Lindsay, R. T., Messer H. J., 1981, “An experimental cold store for vegetables,” Journal Agricultural Engineering Res., Vol. 26, 1981, pp. 529-540.
Netsal, and Associates, T-method Duct System Simulator: User’s Guide,Ver. 3, 1993, California.
Nielsen, P. V., “The selection of Turbulence Models for Prediction of Room Airflow,” ASHRAE Transactions: Symposia, 1998, pp. 1119-1127.
Raskin, J., “Coanda effect: understanding why wings work,” The Humane Interface, http://www.jefraskin.com/forjef2/jefweb-compiled/publis -hed/coanda effect.html.
Reynoso, R. O., Michelis, A. De, “Parameters affecting freezing, storage and transport of individually frozen schoeneman raspberries,” Int. J. of Refrig., Vol. 17, 1994, No. 3, pp. 209-213.
Scott, G., and Richardson, P., “The application of computational fluid dynamics in the food industry,” Trends in Food Science & Technology, Vol. 8, April 1997, pp. 119-124.
Shinichi, Y., Takashi, U., Toshihiko, U., “Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation,” Chemical Engineering Science, Vol. 56, 2001, pp. 4293-4307.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, Philadelphia, 1997.
Utnes, T., and Ren G., “Numerical prediction of turbulent flow around a three-dimensional surface-mounted obstacle,” Appl. Math. Modeling, Vol. 19, January 1995, pp. 7-12.
Van der Ree, H., Basting, W. J., Nievergeld, P, G. M., “Prediction of temperature distribution in cargoes with the aid of a computer program using the method of finite elements,” I. I. F. –I. I. R. Commission D2, Wageningn the Netherlands, 1974, pp. 195-220.
Van Gerwen, R. J. M., Van Oort, H., “Optimization of cold store design using fluid dynamics models,” I. I. F. –I. I. R. Commission, B2, C2, D1, D2/3, Dresden, 1990, pp. 473-478.
Verboven, P., Scheerlinck, N., Baerdemaeker, J. D., and Nicolai, B. M., “Computation fluid dynamics modeling and validation of the isothermal airflow in a forced convection oven,” J. of Food Eng., Vol. 43, 2000, pp. 41-53.
Verboven, P., Scheerlinck, J., Baerdemaeker, J. D., and Nicolaï, B. M., “Sensitivity of the food center temperature with respect to the air velocity and the turbulence kinetic energy,” J. of Food Eng., Vol. 48, 2001, pp. 53-60.
Ventilation principles, http://www.pyrox.com/new/tutor/tutor05.html.
Wang, H., and Touber, S., “Distributed dynamic modeling of a refrigerated room,” Int. J. of Refrig., Vol. 13, July 1990, pp. 214-222.
Wang, L., and Sun, Da-Wen., “Evaluation of performance of slow air, air blast and water immersion cooling methods in the cooked meat industry by the finite element method,” J. of Food Eng., Vol. 51, 2002, pp. 329-340.
Weathers, J. W., and Spitler, J. D., ”A comparative study of room airflow: Numerical prediction using computational fluid dynamics and full-scale experimental measurements,” ASHRAE Transactions: Research, 1993, pp. 144-157.
Yuu, S., Ueno, T., and Umekage, T., “Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation,” Chemical Engineering Science, Vol. 56, 2001, pp. 4293-4307.
Zehua, H., and Da-Wen, S., “Effect of fluctuation in inlet airflow temperature on CFD simulation of air-blast chilling process,” J. of Food Eng., Vol. 48, 2001, pp. 311-316.
江懷德, “室內空氣的分布,” 機械月刊第20卷第7期, 1994。
江懷德, “管路元件的阻抗特性,” 機械月刊第19卷第12期, 1993。
李允中、劉兆仁, ”組合式冷藏庫流場的量測與模擬,” 冷凍冷藏技術研討會, 5月, 1995。
李延青、鄭名山、郭儒家, “噴流於低溫冷凍自動倉庫應用探討,” 工研院能資所(內部發表), 2000。
胡石敏,“冷凍庫氣流模擬研究,” 中國冷凍空調雜誌,pp. 95-101, 6月,1994。
陳彥宏,低溫自動化倉儲系統之實驗量測與電腦模擬研究,碩士論文,中央大學機械工程研究所, 2001。
陳漢興、胡石敏、郭儒家, “計算流體力學(CFD)軟體PHOENICS於冷凍工程中的應用實例,” 中國冷凍空調雜誌,8月,1996。
蕭介宗、盧福明、雷鵬魁, “台灣主要蔬菜冷藏方式之研究和改善工程分析,” 中國農業工程學報30(1),pp. 65-80, 1984。
孫朝棟,食品工程學,藝軒圖書,初版,pp. 248-268, 1987。
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2002-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明