博碩士論文 89323130 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.228.21.186
姓名 曹聿男(Yu-Nan Tsao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微小圓管的層流及熱傳數值模擬
(Numerical laminar flow and heat transfer in microtubes)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應★ 微管道電滲流物理特性之數值模擬
★ 電滲泵內多孔介質微流場特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以模擬軟體FIDAP對小圓管(直徑 0.502 比較楊建裕等人 (2001) 的熱傳量測,發現在中低雷諾數的數值解之溫度剖面與壁溫及平均溫度分布大致遵守傳統熱傳理論的結果,但在高雷諾數 (Re=1687) 的局部及平均Nu值的實驗值皆高於數值預測值,依據楊建裕等人所定義的過渡區範圍 (Re=1,500~3,000),導致本文的模擬熱傳特性已受到紊流影響。
摘要(英) This study use the FIDAP software to simulate the laminar thermal-flow characteristics of the small tubes (where the diameter range: 0.502 Compared with heat transfer measurement of Yang et al. (2001), numerical solutions of temperature profile, wall temperature and mean temperature distribution agree well with conventional heat transfer theory in low and moderate Re flow regime. But in higher Re conditions (Re =1687), experimental results of local and mean Nu are higher than predicted results. Based on Yang’s classification, the transition range is between Re=1,500~3,000. Thus, accuracy of present numerical solutions of laminar heat transfer is affected by turbulence effect in real flow condition.
關鍵字(中) ★ 層流
★ 微小管道流
★ 數值模擬
★ 熱傳特性
關鍵字(英) ★ heat transfer characteristics
★ laminar flow
★ Numerical simulation
★ microtubes flow
論文目次 中文摘要………………………………………………………………… i
英文摘要………………………………………………………………… ii
目錄………………………………………………………………….... iv
表目錄……………………………………………………………….... vi
圖目錄……………………………………………………………….... vii
符號說明………………………………………………………………. ix
第一章 緒論…………………………………………….………….. 1
1.1 研究動機…………………………………………………………. 1
1.2 文獻回顧…………………………………………………………. 2
1.3 造成微小通道與傳統通道偏差的可能解釋………………….… 7
1.4 研究方向…………………………………………………………. 10
第二章 數值模擬方法….………….…………………………….. 11
2.1 有限元素法簡介…...……………………………………………. 11
2.2 Fidap使用的數值演算法…...…………………………………… 11
2.2.1 完全偶合法…………………………………………………. 12
2.2.2 數值收斂解的原則………………………………………….. 14
2.2.3 分離法……...………………………………………………... 15
2.3 前處理、計算階段及後處理階段簡介…………………………. 16
2.4 解題步驟…………………………………………………………. 17
2.5 軸對稱熱流場的描述及統御方程式、邊界條件………………. 18
2.5.1 圓管流場的數值模擬過程………………………………….. 19
2.5.2 圓管熱傳的數值模擬過程………………………………….. 20
第三章 數值結果與討論…………………….…………………. 24
3.1 流場數值模擬與理論值、實驗結果比較……………………… 24
3.1.1速度比較……………………………………………………. 24
3.1.2壓降及中心軸向速度分布…………………………………. 25
3.1.3摩擦因子比較………………………………………………. 27
3.2 熱傳性能模擬與數值解、實驗結果比較……………………… 29
3.2.1 溫度分布……………………………………………………. 29
3.2.2 局部及平均Nu比較…………………………….………….. 30
第四章 結論………………………………………………………. 52
參考文獻……………………………………………..……………… 54
參考文獻 Bailey, D. K., Ammel T. A., Warrington R. O., and Savoie T. I., “Single phase forced convection heat transfer in microgeometries- A review,” IECEC Conf., ES-397 Orlando, FL, ASME, 1995.
Beskok A. and Karniadakis G. E., “Simulation of slip-flows in complex microgeometries,” ASME Proc. DSC, Vol. 40, pp. 355-370, 1992.
Colebrook, C. F., “Turbulent Flow in Pipes with Particular Reference to the Transition Between the Smooth and Rough Pipe Laws,” J. of the Institute of Civil Engineers London, Vol. 11, 1939.
Cuta J. M., McDonald C. E. and Shekarriz A., “Forced convection heat transfer in parallel channel array microchannel heat exchanger,” ASME PID-VOL. 2/HTD-Vol. 338, Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, pp. 17-23, 1996.
FIDAP 8 Theory Manual, Fluent Inc., 1998.
Harley J. C., Huang Y., Bau H. H., and Zemel J. N., “Gas flow in micro-channels,” J. Fluid Mech., Vol. 284, pp. 257-274, 1995.
Incropera F. P. and DeWitt D. P., Fundamentals of Heat Mass Transfer 4th ed., 420-444, John Wiley & Sons, New York, 1996.
Li J. M., Wang B. X. and Peng X. F., “Wall-adjacent layer analysis for developed-flow laminar heat transfer of gases in microchannels,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 839-847, 2000.
Lin S., Kwok C. K., Li R. Y., Chen Z. H., and Chan Z. Y., “Local frictional pressure during vaporization of R-12 through capillary tubes,” Inter. J. Multiphase Flow, Vol. 17, No. 1, pp. 95-102, 1991.
Mala G. M. and Li D., “Flow characteristics of water in microtubes,” Inter. J. Heat and Fluid Flow Vol. 20 pp. 142-148, 1999.
Moody, L. F., “Friction Factors for Pipe Flow,” Transactions of the ASME, Vol. 66, 1944.
Munson B. R., Young D. F. and Okiishi T. H., Fundamentals of Fluid Mechanics 2nd ed., pp. 439-440, pp. 469-470, John Wiley & Sons, New York, 1994.
Obot N. T., “Toward a better understanding of friction and heat/mass transfer in microchannels-A Literature Review,” Proc. of Inter. Conf. on Heat Transfer & Transport Phenomena in Microscale. Oct. 2000.
Palm B., “Heat transfer in microchannels,” Proc. of Inter. Conf. on Heat Transfer & Transport Phenomena in Microscale. Oct. 2000.
Papautsky I., Brazzle J., Ammel T. and Frazier A. B., “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators, Vol. 73, pp. 101-108, 1999.
Peng X. F, and Peterson G. P., “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Exp. Thermal and Fluid Science, Vol. 12, pp. 98-104, 1996.
Peng X. F., Peterson, G. P. and Wang, B. X., “Flow boiling of binary mixtures in microchannel plates,” Inter. J. Heat Mass Transfer, Vol. 39, No. 6, pp. 1257-1264, 1996.
Peng X. F., Peterson G. P., and Wang B. X., “Frictional flow characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 249-264, 1994.
Peng X. F., Peterson G. P., and Wang B. X., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 265-283, 1994.
Pfahler J., Harley J., Bau H., and Zemel J., “Liquid transport in micron and submicron channels,” Sensors and Actuators, Vol. A21-A23, pp. 431-434, 1990.
Qu W., Mala G. M. and Li D., “Pressure-driven water flows in trapezoidal silicon microchannels,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 353-364, 2000.
Rohsenow W. M., Hartnett J. P., Cho Y. I., Handbook of heat transfer 3rd ed., pp. 5.25, McGraw-Hill, 1998.
Tso C.P. and Mahulikar S. P., “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Inter. J. Heat Mass Transfer, Vol. 41, No. 12, pp. 1759-1769, 1998a.
Tso C. P. and Mahulikar S. P., proc. 2nd IEEE Electronics Packaging Technology Conf., Singapore, Dec., pp. 126-132, 1998b.
Tso C. P. and Mahulikar S. P., “The role of the Brinkman number in analyzing flow transitions in microchannels,” Inter. J. Heat Mass Transfer, Vol. 42, pp. 1813-1833, 1999.
Tso C. P. and Mahulikar S. P., “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 1837-1849, 2000.
Wu P. and Little W. A., “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators,” Cryogenics, Vol. 23, No. 5, pp. 273-277, 1983.
Xu B., Ooi K. T., Wong N. T., and Liu C. Y., “Liquid flow in microchannels,” Proc. of the 5th ASME/JSME Thermal Engineering Conf., pp. 6214-6220, 1999.
Yang C., Li D., Hasliyah J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” Inter. J. Heat Mass Transfer, Vol. 41, pp. 4229-4249, 1998.
Yang C. Y., Chien H. T., Lu S. R. and Shyu R. J., “Friction characteristics of water, R-134a and air in small tubes,” Proc. of Inter. Conf. on Heat Transfer and Transport Phenomena in Microscale, pp. 168-174, 2000.
Yang C. Y., Hsu S. M., Chien H. T. and Chen C. S., “Experimental investigation of liquid R-134a and water forced convection heat transfer in small circular tubes,” Trans. of the Aeronautical and Astronautical Society of R.O.C., Vol. 33, No. 4, pp. 179-184, 2001.
Yang C. Y., and Webb R. L., “Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins,” Inter. J. Heat and Mass Transfer, Vol. 39, No. 4, pp. 801-809, 1996.
Yu D., Warrington R., Baron R., and Ameel T., “An experimental investigation of fluid flow and heat transfer in microtubes,” Proc. ASME/JSME Thermal Engineering Conf., Vol. 1, ASME, pp. 523-530, 1995
指導教授 吳俊諆(Jun-Chi Wu) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明