博碩士論文 89326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.221.187.121
姓名 李智強(Jr-Chiang Lee)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 纖維材料對於污泥灰渣砂漿工程性質之影響
(The influence of fiber material on the engineering characteristics of sewage sludge ash mortar)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究
★ 下水污泥灰渣特性及應用於水泥 砂漿之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 下水污泥灰渣已被證明具有卜作嵐活性,可將其摻入水泥砂漿中取代部分水泥。對於含有下水污泥灰渣之砂漿,過去研究著重於其工作性及抗壓強度的探討,對於污泥灰渣砂漿其他重要工程性質,例如抗彎強度、衝擊強度,以及乾縮行為等,尚缺乏有系統之探討。基於以上理由,本研究採取台北民生污水處理廠下水污泥,以模具式焚化爐製備污泥灰渣,並用於製作污泥灰渣砂漿試體,以探討前述重要工程性質。此外,本研究選用微鋼纖維、啞鈴型鋼纖維,以及兩種聚丙稀纖維材料,摻入前述污泥灰渣砂漿,探討以纖維材料改良砂漿工程性質之可行性。
由實驗結果發現,隨著灰渣取代水泥量的增加,將降低污泥灰渣砂漿之抗壓、抗彎強度,並且增加其乾縮量。另一方面,與純水泥砂漿相較而言,污泥灰渣砂漿之工程性質,包含抗壓強度等,均不及同齡期之純水泥砂漿。基於以上研究結果證實,改善污泥灰渣砂漿工程性質之研究有其必要性。
就纖維材料改良砂漿工程性質方面,本研究以水泥取代量20%之污泥灰渣砂漿為研究對象,並添加上述四種纖維於污泥灰渣砂漿。研究結果證實,添加微鋼纖維於污泥灰渣砂漿中,對於污泥灰渣砂漿強度之改善具有顯著的效果,啞鈴型鋼纖維雖然也有提高強度的能力,但是其效能不如微鋼纖。至於聚丙稀纖維,具有提高污泥灰渣砂漿衝擊強度的能力,但是對於抗壓以及抗彎強度,則無明顯改良的效果。因此,本研究實驗結果發現,使用鋼纖維改良污泥灰渣砂漿工程性質,較聚丙稀纖維具有可行性。
摘要(英) The sewage sludge ash (SSA) has been proved to exhibit certain pozzolanic activity and can be reused in mortar to replace partial cement. However, the previous research works focused on the workability and compressive strength of SSA mortar and many other properties, including flexural strength, impact strength, and drying shrinkage of SSA mortar, has seldom been discussed. For this reason, this study selected the sewage sludge of Ming-Shen Community WWTP and prepared SSA from a modular incinerator. The prepared SSA sample was further applied into mortar to obtain SSA mortar. Consequently, the properties of SSA mortar, including compressive strength, flexural strength, impact strength, and drying shrinkage were analyzed. In addition, in order to enhance the properties of SSA mortars, four types of fiber material have been applied into SSA mortar. These fibers include two types of steel fiber, i.e. micro and enlarged-end, and other two types of polypropylene fiber.
According to the test results, the compressive and flexural strength of SSA mortars, generally decreased with increasing application amount of SSA. In contrast, the amount of drying shrinkage of SSA mortar generally increased with increasing application amount of SSA. When comparing with pure cement mortar, the SSA mortars exhibited lower strength and higher amount of drying shrinkage. This result revealed the necessity of the modification of SSA mortars.
Regarding the application of fiber material, the cement replacement ratio of the tested SSA mortars was 20%. The test results indicated that, the micro steel fiber exhibited superior effects on the simultaneous enhancement of the compressive strength, flexural strength, and impact strength of SSA mortar. The enlarged-end steel fiber could also improve the strength of SSA mortar, however it was less effective than micro steel fiber. In addition, the two types of polypropylene fiber could only improve impact strength of SSA mortar. Thus the effectiveness of polypropylene fibers on improving properties of SSA mortar was less than that of steel fibers.
關鍵字(中) ★ 纖維材料
★ 污泥灰渣砂漿
★ 強度
★ 乾縮
關鍵字(英) ★ drying shrinkage
★ strength
★ fiber material
★ mortar
★ sewage sludge ash
論文目次 纖維材料對於污泥灰渣砂漿工程性質之影響
目錄
中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
目錄…………………………………………………………………III
圖目錄…………………………………………………………………VI
表目錄…………………………………………………………………IX
第一章 前言……………………………………………………………1
1-1 研究緣起…………………………………………………………1
1-2 研究目的與內容……………………………………………………2
第二章 文獻回顧……………………………………………………….4
2-1 污泥灰渣應用於水泥材料……………………………………4
2-1-1 灰渣應用於水泥材料之原理…………………………….4
2-1-2 污泥灰渣成分對水泥砂漿之影響……………………….6
2-1-3 污泥灰渣取代水泥可行性評估………………………….7
2-2 纖維材料種類與常用以描述纖維之參數…………………...13
2-2-1 纖維種類………………………………………………...13
2-2-2 纖維參數………………………………………………...15
2-3 纖維混凝土強度……………………………………………...17
2-3-1 決定纖維混凝土強度性質之三相……………………...17
2-3-2 抗壓強度……………………………………………..….17
2-3-3 抗拉強度………………………………………………...19
2-3-4 抗彎強度………………..……………………………….21
2-3-5 衝擊強度……………………..………………………….22
2-4 卜作嵐材料對於纖維加勁之助益……………..……………24
2-4-1 過渡區理論(Transition zone)……………………………24
2-4-2 卜作嵐材料之助益……………………………………...25
2-5 砂漿及混凝土之乾燥收縮…………………………………..26
2-5-1 乾燥收縮之機制與變數………………………………...26
2-5-2 以纖維控制乾燥收縮…………………………………...27
2-5-3 卜作嵐摻料對於砂漿乾燥收縮之影響……………...…28
2-5-4 乾縮裂縫與環形試驗(Ring test)………………………..29
第三章 實驗材料與方法………………………………………………33
3-1 實驗流程與實驗計劃………………………………………...33
3-1-1實驗流程………………………………………………….33
3-1-2實驗計劃………………………………………………….34
3-2 實驗材料……………………………………………………...43
3-3 試驗與分析方法……………………………………………...44
3-3-1 下水污泥採樣及分析方法……………………………...44
3-3-2 下水污泥灰渣製備及分析方法…………..………….…47
3-3-3 砂漿製備及分析方法…………………………………...49
第四章 結果與討論……………………………………………………58
4-1 下水污泥灰渣基本性質……………………………………...58
4-2 灰渣纖維砂漿之工作性……………………………………...60
4-2-1 灰渣對於砂漿工作性之影響…………………………...60
4-2-2 拌合方式對於灰渣纖維砂漿工作性之影響…………...61
4-2-3 纖維對於砂漿工作性之影響…………………………...62
4-2-4 灰渣及纖維之交互作用對於砂漿工作性之影響……...65
4-3 灰渣纖維砂漿之強度………………………………………..68
4-3-1 纖維對於灰渣砂漿抗壓強度之影響.…………………..68
4-3-2 纖維對於灰渣砂漿抗彎強度之影響…………………...90
4-3-3 纖維對於灰渣砂漿衝擊強度之影響……………..…...100
4-3-4 鋼纖維在灰渣砂漿工程性質之綜合比較…………….106
4-3-5 污泥灰渣對於纖維加勁之影響……………………….107
4-4 纖維對於灰渣砂漿乾燥收縮之影響………………...……..112
4-4-1 污泥灰渣砂漿的乾收縮行為…………………...……...112
4-4-2 pp纖維對於灰渣砂漿乾縮應變的影響………..……..118
4-4-3 鋼纖維對於灰渣砂漿乾縮應變的影響……………….121
4-5 纖維對於灰渣砂漿乾縮裂縫之影響………………….……125
4-5-1 純水泥砂漿與灰渣砂漿裂縫行為…………………….126
4-5-2 纖維控制灰渣砂漿裂縫行為………………………….129
4-5-3 纖維控制灰渣砂漿裂縫行為與強度………………….131
4-6 實驗結果與文獻之比較……………………………….……131
第五章 結論與建議
5-1 結論………………………………………………………….134
5-2 建議………………………………………………………….136
參考文獻………………………………………………………………137
附錄……………………………………………………………………A-1
參考文獻 參考文獻
厲娓娓,「微鋼纖維水泥砂漿材料性質研究」,碩士論文,國立台灣大學土木工程研究所,台北(1994).
潘時正、曾迪華、李釗,下水污泥灰渣特性及再利用於水泥材料之評估,國立中央大學環境工程學刊,No.5,pp.115-129 (1998).
楊錦懷、陳昶良,「纖維加強混凝土應用於預鑄構件接頭之剪力行為」,J. of the Chinese Inst. of Civil and Hydraulic Engineering,Vol.10,No.2,pp.205-214(1998).
曾迪華、潘時正、李釗,「下水污泥灰渣特性及應用於水泥砂將之初步研究」,第九屆下水道技術研討會論文集,台北,第239-253頁(1999)。
曾迪華、潘時正、李智強、李釗,「研磨加工改良下水污泥灰渣卜作嵐活性及砂漿性質」,第十屆下水道技術研討會論文集,台北,第103-112頁 (2000)。
優異國際開發有限公司編譯,「ACI 544.3R 鋼纖維混凝土配比、拌合、澆築及飾面規範說明(Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete)」,現代營建,No.233, pp.17-22(2000).
巫漢添、李騰芳、林忠仁、陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(上)」,現代營建,No.246, pp.68-76(2000).
巫漢添、李騰芳、林忠仁、陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(下)」,現代營建,No.247, pp.59-67(2000).
Balaguru, P., and Dipsia, M.G., “Properties of Fiber Reinforced High-Strength Semilightweight Concrete”, ACI Materials Journal, Vol.90, No.5, pp.399-405 (1993).
Bentur, R. A., and Jennings, H. M.,”Estimation of C-S-H Content in a Blended Cement Paste Using Water Adsorption”, Cement and Concrete Research, Vol.13, pp. 351-356 (1985).
Bhatty, J. I., and Reid, K. J., “Compressive Strength of Municipal Sludge Ash Mortars”, ACI Materials J., Vol.86, No.4, pp.394-400 (1989).
Bindiganavile, V., and Banthia, N.,”Polymer and Steel Fiber-Reinforced Cementitious Composites under Impact Loading-Part1: Bond-Slip Response”, ACI Materials Journal, Vol.98, No.1, pp.10-16 (2001).
Blankenhorn, P. R., and Silsbee, M. R., and Blankenhorn, B. D., and DiCola, M., and Kessler, K.,”Temperature and Moisture Effects on Selected Properties of Wood Fiber-Cement Composites”, Cement and Concrete Research, Vol.29, No.3, pp.737-741 (1999).
Bonen, D., and Khayat, K. H., “Characterization and Pozzolanic Properties of Silica Fume Stored in an Open Pond”, Cement and Concrete Research, Vol.25, No.2, pp.395-407 (1995).
Day, R.L., and Shi, C., “Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes”, Cement and Concrete Research, Vol. 24, No. 8, pp. 1485-1491 (1994).
Fisher, A. K., and Bullen, F., and Beal, D.,”The Durability of Cellulose Fibre Reinforced Concrete Pipes in Sewage Applications”,Cement and Concrete Research, Vol. 31, pp. 543-553 (2001).
Fu, X., and Chung, D. D. L.,”Effects of Silica Fume, Latex, Methylcellulose, and Carbon Fibers on the Thermal Conductivity and Specific Heat of Cement Paste”, Cement and Concrete Research, Vol.27, No.12, pp.1799-1804 (1997).
Fu, X., and Chung, D. D. L.,”Sensitivity of the Bond Strength to the Structure of the Interface between Reinforcement and cement, and the Variability of this Structure”, Cement and Concrete Research, Vol.28, No.6, pp.787-793 (1998).
Fu, X., and Lu, W., and Chung, D. D. L.,”Improving the Strain-Sensing Ability of Carbon Fiber-Reinforced Cement by Ozone Treatment of the Fibers”, Cement and Concrete Research, Vol.28, No.2, pp.183-187 (1998).
Gardner, N. J., and Lockman, M. J.,”Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete”,ACI Materials Journal, Vol.98, No.2, pp.159-167 (2001).
Grzeszczyk, S., and Lipowski, G., “Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes”, Cement and Concrete Research, Vol. 27, No. 6, pp. 907-916 (1997).
Grzybowski, X., and Mayer, D. L.,” Silica Fume, Polymer Admixtures, Steel Surface Treatments, and Corrosion on Bond between Concrete and Steel Reinforcing Bars”, ACI Materials Journal, Vol.90, No.6, pp.725-734 (1993).
Hong, S., and Lim, G., and Lee, B., and Lee, B., and Rho, J.,”Mechanical Strength Enhancement of Lower Hydraulicity Cementitious Solid Wastes Using Anhydrite and Pozzolanic Materials”, Cement and Concrete Research, Vol.29, pp. 215-221(1999).
Keyvanis, A., and Saeki, N., “Behavior of Fiber Concrete Composites Using Recycled Steel Shavings”, J. of Solid Waste Technology and Management, Vol.24, No.1, pp.1-8 (1997).
Khanbilvardi, R., and Afahari, S., “Sludge Ash as Fine Aggregate for Concrete Mix”, ASCE J. of Environmental Engineering, Vol.121, No.9, pp.633-638 (1994).
Kim, T. J., and Park, C. K.,”Flexural and Tensile Strength Developments of Various Shape Carbon Fiber-Reinforced Lightweight Cementitious Composites”, Cement and Concrete Research, Vol.28, No.7, pp.955-960 (1998).
Kim, P. J., and Wu, H. C., and Lin, Z., and Li, V. C., and deLhoneux, B., and Akers, S. A. S.,”Micromechanics-based Durability Study of Cellulose Cement in Flexure”, Cement and Concrete Research, Vol.29, No.1, pp.201-208 (1999).
Krstulovic-Opara, N., and Malak, S.,”Micromechanical Tensile Behavior of Slurry Infiltrated Continuous-Fiber-Mat Reinforced Concrete(SIMCON)”,ACI Materials Journal, Vol.94, No.5, pp.373-384 (1997).
Krstulovic-Opara, N., and Al-Shannag, M. J.,”Compressive Behavior of Slurry Infiltrated Mat Concrete”,ACI Materials Journal, Vol.96, No.3, pp.367-377 (1999).
Li, Y., and Hu, S.,”the Microstructure of the Interfacial Transition Zone between Steel and Cement Paste”, Cement and Concrete Research, Vol.31, pp.385-388 (2001).
Lim, Y. M., and Wu, H., and Li, V. C.,”Development of Flexural Composite Properties and Dry Shrinkage Behavior of High-Performance Fiber Reinforced Cementitious Composites at Early Ages”, ACI Materials Journal, Vol.96, No.1, pp.20-26 (1999)
Lorenzis, L. D., and Miller, B., and Nanni, A.,”Bond of Fiber-Reinforced Polymer Laminates to Concrete”,ACI Materials Journal, Vol.98, No.3, pp.256-264 (2001).
Lu, W., and Fu, X., and Chung, D. D. L.,”A Comparative Study of the Wettability of Steel, Carbon, and Polyethylene Fibers by Water”,Cement and Concrete Research, Vol.28, No.6, pp.783-786 (1998).
Malhotra, V. M., Carette, G. G., and Bilodeau, A., “Mechanical Properties and Durability of Polypropylene Fiber Reinforced High-volume Fly Ash Concrete for Shotcrete Applications”,ACI Materials Journal, Vol.91, No.5, pp.478-486 (1994).
Mehta, P.K., “Concrete, Structure, Properties, and Materials”, Prentice-Hall, Inc., New Jersey (1986).
Mindess, S., and Young, J. F., “Concrete”, Prentice-Hall, Inc., New Jersey (1981).
Monzo, J. and Paya, J. and Borrachero, M. V. and Corcoles, A., “Use of Sewage Ash (SSA) - Cement Admixtures in Mortars”, Cement and Concrete Research, Vol.26, No.9, pp.1389-1398 (1996).
Naaman, A. E., and Otter, D., and Najm, H.,”Elastic Modulus of SIFCON in Tension and Compression”, ACI Materials Journal, Vol.88, No.6, pp.603-612 (1991).
Najm, H. S., and Naaman, A. E.,”Prediction Model for Elastic Modulus of High-Performance Fiber Reinforced Cement-Based Cpmposites”, ACI Materials Journal, Vol.92, No.3, pp.304-314 (1995).
Okafor, F. O., Eze-Uzomaka, O. J., and Egbuniwe, N., “The Structural Properties and Optimum Mix Proportions of Palmnut Fiber-reinforced Mortar Composite”, Cement and Concrete Research, Vol.26, No.7, pp.1045-1055 (1996).
Park, S. B., and Lee, B. I.,”Experimental Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites”, Cement and Concrete Research, Vol.21, No.2, pp. 589-600(1991).
Park, S. B., and Lee, B. I.,”Mechanical Properties of Carbon Fiber-Reinforced Polymer Impregnated cement composites”, Cement and Concrete composite, Vol.15, No.1, pp.153-163 (1993). Cement and Concrete Research, Vol. 23, No. 4, pp. 917-924 (1993).
Park, S. B., and Yoon, E. S., and Lee, B. I.,”Effects of Processing and Materials Variations on Mechanical Properties of Lightweight Cement Composites”, Cement and Concrete Research, Vol.29, No.1, pp.193-200 (1999).
Paya, J., and Monzo, J., and Borrachero, M.V., and Peris-Mora, E., “Mechanical treatments of fly ash. Part I: physico-chemical characterization of ground fly ashes”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1469-1479 (1995).
Paya, J., and Monzo, J., and Borrachero, M.V., and Peris-Mora, E., and Gonzalez-Lopez, E., “Mechanical treatments of fly ash. Part III: studies on strength development of ground fly ash (GFA)-cement mortars”,Cement and Concrete Research, Vol. 27, No. 9, pp. 1365-1377 (1997).
Peris-Mora, E., and Paya, J., and Monzo, J., “Influence of different sized fractions of a fly ash on workability of mortars”, Cement and Concrete Research, Vol. 23, No. 4, pp. 917-924 (1993).
Poskova, T., and Meyer, C., “Low-cycle Fatigue of Plain and Fiber-Reinforced Concrete”, ACI Materials Journal, Vol.94, No.4, pp.373-385(1997).
Poston, R. W., and Kesner, K., and McDonald, J. E., and Vaysburd, A. M., and Emmons, P. H.,”Concrete Repair Material Performance-Laboratory Study”,ACI Materials Journal, Vol.98, No.2, pp.137-147 (2001).
Rao, G. A.,”Long-Term Drying Shrinkage of Motar-Influence of Silica Fume and Size of Fine Aggregate”,Cement and Concrete Research, Vol. 31, pp. 171-175(2001).
Robins, P., and Austin, S., and Chandler, J., and Jones, P.,”Flexural Strain and Crack Width Measurement of Steel-Fiber-Reinforced Concrete by Optical Grid and Electical Gauge Methods”,Cement and Concrete Research, Vol.31, No.3, pp.719-729 (2001).
Shah, S. P.,;Karagular, M. E.;and Sarigaphuti, M.,”Effects of Shrinkage-Reducing Admixtures on Restrained Cracking of Concrete”, ACI Materials Journal, Vol.89, No.3, pp.289-295 (1992).
Sarigaphuti, M., Shah, S. P., and Vinson, K. D., “Shrinkage Cracking and Durability Characteristics of Cellulose Fiber Reinforced Concrete”, ACI Materials Journal, Vol.90, No.4, pp.309-318 (1993).
Shao, Y., and Shah, S. P.,”Mechanical Properties of PVA Fiber Reinforced Cement Composites Fabricated by Extrusion Processing”, ACI Materials Journal, Vol.94, No.6, pp.555-564 (1997).
Singh, S. P., and Kaushik, S. K.,”Flexural Fatigue Analysis of Steel Fiber-Reinforced Concrete”, ACI Materials Journal, Vol.98, No.4, pp.306-312 (2001).
Soroushian, P., and Ravanbakhsh, S.,“High-Early-Strength Concrete: Mixture Proportioning with Processed Cellulose Fiber for Durability”,ACI Materials Journal, Vol.96, No.5, pp.593-599 (1999).
Sun, W., and Chen, H., and Lou, X., and Qian H.,”The Effect of Hybrid Fibers and Expansive Agent on the Shrinkage and Permeability of High-Performance Concrete ”, Cement and Concrete Research, Vol. 31, pp. 595-601 (2001).
Tay, J. H., “Sludge Ash as Filler for Portland Cement Concrete”, ASCE J. of Environmental Engineering, Vol.113, No.2, pp.345-351 (1987).
Tay, J. H. and Yip, W. K., “Sludge Ash as Lightweight Concrete Material”, ASCE J. of Environmental Engineering, Vol.115, No.1, pp.56-64 (1989).
Tay, J. H. and Yip, W. K. and Show, K. Y., “Clay-Blended Sludge as Lightweight Aggregate Concrete Material”, ASCE J. of Environmental Engineering, Vol.117, No.6, pp.834-844 (1991).
Tay, J. H. and Show, K. Y., “The Use of Lime-Blended Sludge for Production of Cementitious Material”, Water Environment Research, Vol.64, No.1, pp.6-12 (1992).
Tay, J. H. and Show, K. Y., “Municipal Wastewater Sludge as Cementitious and Blended Cement Materials”, Cement and Concrete Composites, Vol.16, pp.39-48 (1994).
Tjiptobroto, P., and Hansen, W., “Tensile Strain Hardening and Multiple Cracking in High-Performance Cement-Based Composites Containing Discontinuous Fibers”, ACI Materials Journal, Vol.90, No.1, pp.16-25 (1993).
Toledo Filho, R. D., and Sanjuan, M. A.,”Effect of Low Modulus Sisal and Polypropylene Fibre on the Free and Restrained Shrinkage of Mortars at Early Age”, Cement and Concrete Research, Vol. 29, pp. 1597-1604 (1999).
Toutanji, H., and McNeil, S., and Bayasi, Z.,”Chloride Permeability and Impact Resistance of Polypropylene-Fiber-Reinforced Silica Fume Concrete”,Cement and Concrete Research, Vol. 28, No. 7, pp. 961-968 (1998).
Toutanji, H. A.,”Properties of Polypropylene Fiber Reinforced Silica Fume Expansive-Cement Concrete”,Construction and Building Materials, Vol.13, pp.171-177(1999).
Vallens, K., and Bescher, E., and Mackenzie, J. D., and Rice, E.,”A New Technique for the Measurement of the Impact Resistance of Wall Coatings”, Cement and Concrete Research, Vol. 31, pp. 965-968 (2001).
Wang, Y., Zureick, A., Cho, B., and Scott, D. E., “Properties of Fibre Reinforced Concrete Using Recycled Fibres from Carpet Industrial Waste”, J. of Materials Science, Vol.29, pp.4191-4199(1994).
Wen, S., and Chung, D. D. L.,”Piezoresistivity in Continuous Carbon Fiber Cement-Matrix Composite”, Cement and Concrete Research, Vol.29, No.2, pp.445-449 (1999).
Xu, G., and Magnani, S., and Hannant, D.,”Tensile Behavior of Fiber-Cement Hybrid Composites Containing Polyvinyl Alcohol Fiber Yarns”, ACI Materials Journal, Vol.95, No.6, pp.667-674 (1998).
Xu, Y., and Chung, D. D. L.,”Effect of Carbon Fibers on the Vibration-Reduction Ability of Cement”,Cement and Concrete Research, Vol. 29, pp. 1107-1109 (1999).
Zhang, C., and Wang, A., and Tang, M., “The filling role of pozzolanic material”, Cement and Concrete Research, Vol. 26, No. 6, pp. 943-947 (1996).
Zhang, J., and Stang, H., “Applications of Stress Crack Width Relationship in Predicting the Flexural Behavior of Fiber-reinforced Concrete”,Cement and Concrete Research, Vol.28, No.3, pp.439-452 (1998).
Zhu, W., and Bartos, P. J. M.,”Assessment of Interfacial Microstructure and Bond properties in Aged GRC Using a Novel Microindentation Method”, Cement and Concrete Research, Vol.27, No.11, pp.1701-1711 (1997).
Zollo, R. F., and Hays, C. D., “Engineering Material Properties of a Fiber Reinforced Cellular Concrete”, ACI Materials Journal, Vol.95, No.5, pp.631-635 (1998).
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2002-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明