博碩士論文 89326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:35.175.191.168
姓名 邱舜稜(Shun-Leng Chiou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以Microtox檢測方法評估實際廢水生物毒性之研究
(Use of Microtox Tests to Assess Acute Toxicity in Practical Wastewater)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用Microtox檢測技術,調查都市污水處理廠、綜合工業區污水處理廠及科學園區污水處理廠等實際廢水的生物毒性,評估生物及化學混凝等處理程序的減毒效果,同時,本研究亦分析Microtox檢測值與一般水質參數之相關性,以瞭解廢水生物毒性的主要來源;此外,本研究藉由Biolog菌種鑑定法,調查各處理廠生物單元的菌相,以進一步評估廢水生物毒性對生物處理單元菌相的影響。
實驗結果顯示,都市污水處理廠因添加次氯酸鈉作為消毒劑,致使放流水呈現較高的生物毒性,其中,Microtox毒性單位TU5min及TU15min的最大值分別為21.7及28.6。科學園區污水處理廠可能由於水中有毒物質濃度偏低,致使進出流水均測得無生物毒性。此外,綜合工業區污水處理廠進流廢水大致上具有低生物毒性,惟採樣期間亦曾監測到高生物毒性的進流水,TU5min及TU15min最高分別達6.1及9.7,但本廠放流水皆呈現低生物毒性。值得注意的是,綜合工業區污水處理廠之活性污泥程序具有明顯的減毒功能,最大之TU5min 及TU 15min單元減毒效率可達71%及63%。純氧曝氣程序亦具有減毒效果,但是減毒功能並不穩定,推測應是活性污泥濃度偏低及HRT不足等因素所造成。另外,綜合工業區污水處理廠之新廠化混程序並不具減毒功能,化混程序出流水的生物毒性反而有增加的現象,最大之TU5min 及TU 15min分別為4.4及5.1,推測主要為混凝劑PAC添加過量所致。
本研究中,各採樣點TU5min與TU15min具良好的相關性(R2=0.89),因此建議Microtox檢測時間可縮短為5分鐘。另外,綜合工業區污水廠活性污泥程序出流水中DOC與TU15min之相關係數達0.86,出流水DOC增加時,毒性呈下降之趨勢,因此有機物並非毒性來源。新廠化混程序出流水中,TDS與TU值亦具有相關性,當混凝劑添加量較大時,造成溶解性固體濃度增加,致使廢水之生物毒性亦隨之提高。
Biolog菌種鑑定結果發現,都市污水廠生物單元的菌相分布,呈現集中的情形,僅存在一優勢菌屬Aeromonas spp.,而綜合工業區生物單元的主要優勢菌屬則包含Acinetobacter spp.、Burkholderia spp.及Pseudomonas spp.等,且當TU5min及TU15min分別為3.8及6.7,具有較高生物毒性時,上述三種菌屬的存在比例亦會有明顯增加的現象。
摘要(英) The objectives of this study were intended to investigate the acute toxicity of practical wastewater in one municipal treatment plant, industrial treatment plant and science-based industrial treatment plant by the Microtox tests. Moreover, the detoxification of biological processes and chemical coagulation processes were understood, and the primary source of acute toxicity was determined by means of linear regression for several parameters of water quality and toxicity unit (TU) of Microtox tests. Furthermore, this study also identified bacteria of biological processes by Biolog identification and then investigated the effect of acute toxicity on the microbial community.
Results indicated the effluent of municipal treatment plant exhibited high acute toxicity because NaOCl was used as the disinfectant, and the maximum value of TU5min and TU15min was 21.7 and 28.6, respectively. In addition, none of acute toxicity was identified in the wastewater of science-base industrial treatment plant because the toxic compounds were suggested to be at very low concentration. The acute toxicity of influent and effluent was generally low in the industrial treatment plant even high acute toxicity was once observed in the influent. Moreover, the activated sludge process (ASP) has obvious performance of detoxification. The maximum reduction of acute toxicity in TU5min and TU15min was estimated to be 71% and 63%, respectively. Pure oxygen activated sludge process also has the function of detoxification. However, the performance of detoxification was unstable due to low concentration of MLSS and inadequate HRT. Notably, the function of detoxification was not observed in one chemical coagulation process of industrial treatment plant. The acute toxicity of industrial wastewater increased due to overdosage of coagulant PAC. The maximum value of TU5min and TU15min was 4.4 and 5.1 in the effluent of chemical coagulation process, respectively.
Additionally, there was a fine correlation of linear regression between the value of TU5min and TU15min in each sample. Thus, the time of Microtox tests could be shorten to 5 min. For the industrial treatment plant, the values of TU15min and dissolved organic carbon (DOC) also exhibited 0.86 of correlation coefficient in the effluent of ASP. Also, the value of TU increased with the increase of total dissolved solid (TDS) in the effluent of chemical coagulation process. This result showed that the use of PAC increased TDS and then resulted in the increase of acute toxicity.
Furthermore, Biolog identification showed Aeromonas spp. was only the predominant bacteria in the ASP of municipal treatment plant. However, Acinetobacter spp., Burkholderia spp. and Pseudomonas spp. was identified as the predominant bacteria in the ASP of industrial treatment plant. The predominant percentage of this three genus of bacteria increased apparently when the TU5min and TU15min increased to 3.8 and 6.7 in the influent of ASP, respectively.
關鍵字(中) ★ 綜合工業廢水
★ 生物毒性
★ Microtox
★ Biolog
★ 減毒
關鍵字(英) ★ Microtox
★ acute toxicity
★ industrial wastewater
★ Biolog identification
★ detoxification
論文目次 摘要 ……………………………………………………….. I
目錄 ……………………………………………………….. III
圖目錄 ……………………………………………………….. VI
表目錄 ……………………………………………………….. VIII
第一章 前言………………………………………………….. 1
1-1 研究緣起…………………………………………….. 1
1-2 研究目的與內容…………………………………….. 2
第二章 文獻回顧…………………………………………….. 3
2-1 廢水中毒性物質…………………………………….. 3
2-2 生物毒性檢驗……………………………………….. 5
2-3 Microtox毒性試驗原理及表示法…………………… 6
2-4 Microtox毒性試驗之影響因子及適用性…………… 10
2-4-1 影響因子……………………………………. 10
2-4-2 適用性……………………………………….. 13
2-5 應用Microtox於污水廠廢水毒性檢測之相關研究.. 19
2-5-1 廢水之Microtox毒性……………………. 19
2-5-2 廢水處理程序對生物毒性之影響…………. 21
2-5-3 Microtox毒性與廢水水質之相關性…….. 24
第三章 實驗設備、材料與方法……………………………… 26
3-1 研究流程……………………………………………... 25
3-2 實廠處理流程及廢水特性………………………….. 28
3-3 採樣規劃……………………………………………. 36
3-4 實驗設備與材料…………………………………….. 38
3-4-1 實驗設備………………………………………. 38
3-4-2 實驗材料……………………………………… 39
3-5 分析方法……………………………………………... 41
3-5-1 一般水質分析項目……………………………. 41
3-5-2 Microtox生物毒性試驗法…………………... 43
3-5-3 Biolog分析法………………………………... 48
第四章 研究結果與討論……………………………………... 50
4-1 各廢污水處理廠之水質毒性調查………………….. 50
4-1-1 都市污水處理廠………………………….. 50
4-1-2 綜合工業區污水處理廠………………….. 52
4-1-3 科技園區污水處理廠…………………….. 54
4-2 處理程序對廢水毒性之影響………………………... 56
4-2-1 生物程序……………………………………. 56
4-2-2 化混程序…………………………………….. 68
4-2-3 消毒程序……………………………………. 71
4-2-4 中和程序……………………………………. 74
4-2-5 綜合討論……………………………………. 77
4-3 廢水之生物毒性與水質參數……………………….. 79
4-3-1 測試時間對Microtox毒性檢驗方法之影響.. 79
4-3-2 水質項目與TU5min及TU15min之相關性……. 83
4-4 生物毒性對生物處理程序菌相之影響……………... 91
4-4-1 不同性質之廢水對生物程序中菌相之影響.. 91
4-4-2 菌株特性介紹………………. ……………… 96
第五章 結論與建議……………. …………. .…………….…. 100
5-1 結論……………. ……………. ………………… 100
5-2 建議……………. ……………. ………………… 102
參考文獻………………………………………………………… 103
附錄A Microtox毒性試驗法之操作方法
附錄B Biolog菌種鑑定方法介紹
附錄C 水質檢測原始數據
附錄D 菌相原始數據
圖目錄
圖2-1 Microtox光損失率隨時間的變化……………………………11
圖3-1 研究流程圖…………………………………………..………..27
圖3-2 都市污水處理廠處理流程…………………………..………..29
圖3-3 綜合工業區污水處理廠處理流程…………………..………..31
圖3-4 科學園區污水處理廠處理流程……………………..……..…33
圖3-5 Microtox Toxicity Analyzer…………………………….……..43
圖3-6 Microtox 32個培養槽配置圖……………………………...…44
圖3-7 Biolog鑑定系統之操作流程圖……………………………….49
圖4-1 都市污水處理廠之Microtox檢測結果…………..…………..51
圖4-2 綜合工業區污水處理廠之Microtox檢測結果……….…..…53
圖4-3 科學園區污水處理廠之Microtox檢測結果……..…………..55
圖4-4 都市污水處理廠ASP之Microtox檢測結果 (a) TU 5min及(b) TU 15min………………………………………………..……57
圖4-5 都市污水處理廠RBC之Microtox檢測結果(a) TU 5min及(b) TU 15min……………………………………………………..58
圖4-6 綜合工業區污水處理廠ASP之Microtox檢測結果(a) TU 5min及(b) TU 15min………………………….…………60
圖4-7 綜合工業區污水處理廠純氧活性污泥程序之Microtox檢測結果 (a) TU 5min及(b) TU 15min……………………………..61
圖4-8 綜合工業區污水處理廠舊廠化學混凝程序之Microtox測值 (a) TU 5min及(b) TU 15min…………………………..……..66
圖4-9 綜合工業區污水處理廠新廠化學混凝程序之Microtox測值(a) TU 5min及(b) TU 15min………………………….…………67
圖4-10 純水中PAC之Microtox毒性測試…………………………..70
圖4-11 都市污水處理廠消毒程序之Microtox測值(a) TU 5min及(b) TU 15min…………………..…………………………………72
圖4-12 純水中NaOCl之Microtox毒性測試………………………..73
圖4-13 含NaOCl之廢水中不同劑量Na2S2O3之Microtox毒性測試.73
圖4-14 綜合工業區污水處理廠舊廠中和程序之Microtox測值 (a) TU 5min及(b) TU 15min………….……………………………..75
圖4-15 綜合工業區污水處理廠新廠中和程序之Microtox測值 (a) TU 5min及(b) TU 15min…………….………………….……….76
圖4-16 都市污水及綜合工業廢水TU5min與TU15min之相關性…..…..80
圖4-16 都市污水及綜合工業廢水TU5min與TU15min之相關性(續)…81
圖4-17 所有採樣點TU5min與TU15min之相關性………………………82
圖4-18 都市污水廠放流水之TU15min與DOC之相關性……………85
圖4-19 綜合工業區污水廠ASP出流水DOC 與TU15min之相關性..85
圖4-20 綜合工業區污水處理廠之新廠化混程序出流水TDS 與 (a)TU5min (b) TU15min之相關性圖……………………………86
圖4-21 綜合工業區污水處理廠之新廠中和程序出流水pH與 TU15min之相關性圖…………………………………………………..87
圖4-22 綜合工業區污水處理廠之新廠化混程序出流水中(a)Al3+ 及(b)Cl- 與TU15min之相關性………………………………..…90
圖4-23 綜合工業區污水處理廠放流水COD與TU5min及TU15min之相關性…………………………………………..………..……..91
圖4-24 各廠生物槽之菌相分布比較…………..……………………..92
圖4-25 綜合工業區污水處理廠ASP水樣之菌相……………………95
表目錄
表2-1 廢水中常見的優先列管毒物……………………..……………4
表2-2 細菌性生物毒性試驗的特色……………………………..……7
表2-3 毒性測試指標意義……………………………………..………8
表2-4 生物毒性效應分級..…………………………………..………10
表2-5 測試溫度對酚溶液毒性之影響………………………..….….12
表2-6 氯化鈉濃度對硝酸鎘(EC50,15 min)之生物毒性影響…………12
表2-7 生物毒性測試綜合比較………………………………..……..15
表2-8 國內環檢所公告的水樣急毒性檢測方法……………..….….16
表2-9 不同樣本之Microtox再現性研究……………….….………..16
表2-10 Microtox與其他魚類毒性試驗之相關性……………….…..18
表2-11 廢水之Microtox毒性分析結果…………..…………..….…..20
表2-12 Microtox與水質參數之相關係數…………………….….….25
表3-1 都市污水處理廠處理流程設計及操作參數…………...…….30
表3-2 綜合工業區污水處理廠處理流程設計及操作參數…………32
表3-3 科學園區污水處理廠處理流程設計及操作參數………..…..34
表3-4 採樣規劃設計…………………………..………….………….37
表3-5 水質分析項目與分析方法……………...………..….….…….42
表3-7 Microtox生物毒性試驗法之操作步驟………………….……46
表3-8 生物毒性分級…………………………………..……………..48
表4-1 都市污水處理廠之Microtox分析結果彙整…….….….…….52
表4-2 綜合工業區污水處理廠之Microtox分析結果彙整………....54
表4-3 科學園區污水處理廠中主要VOCs生物急毒性…………….56
表4-4 綜合工業區ASP水質檢測………………………………...…63
表4-5 綜合工業區純氧活性污泥程序水質檢測…………………....63
表4-6 綜合工業區ASP毒性及傳統參數去除率……………………64
表4-7 綜合工業區純氧活性污泥程序毒性及傳統參數去除率…....64
表4-8 綜合工業區舊廠化混程序水質檢測………………………....69
表4-9 綜合工業區新廠化混程序水質檢測…………………………69
表4-10 都市污水廠消毒程序放流水之Microtox變化……….....….73
表4-11 各處理程序對廢水急毒性影響因素之彙整………..…..…..78
表4-12 TU5min與TU15mn之相關係數……………………….…….….82
表4-13 都市污水廠Microtox 測值與水質參數之相關係數……….84
表4-14 綜合工業區污水廠Microtox 測值與水質參數之相關係數84
表4-15 綜合工業區污水廠Microtox與水質參數之相關性..………89
表4-16 各廠生物程序之Microtox測值及優勢菌種比較…..…..…..93
表4-17 廢水性質與菌株代謝特性比較表彙整………..……………99
參考文獻 1. Amoth A. R., J. P. Miller, and G. T. Hickman, “Treatment Technologies for Reduction of Color, AOX and Resin & Fatty Acids. ”, Tappi Environmental conference, pp. 339-346.(1992)
2. Andreja Z. G., and Z. K. Jana, “Whole Effluent and Single Substance Approach:A Tool for Hazardous Wastewater Management”, Water Science and Technology 37(8), pp. 219-227(1998)
3. Arbuckle W. B., and J. E. Alleman, “Effluent Toxicity Testing Using Nitrifiers and Microtox”, Water Environmental Research, 64(3), pp.263-267(1992)
4. Asami M., N. Suzuki, and J. Nakanishi, “Aquatic Toxicity Emission from Tokyo: Wastewater Measured Using Marine Luminescent Bacterium, Photobacterium Phosphoreum”, Water Science and Technology, 33(6), pp. 121-128(1996)
5. Barker, D. J., and D. C. Stuckey, “A Review of Soluble Microbial Products in Wastewater Treatment Systems,” Water Research, 33(14), pp. 3063-3082,(1999)
6. Bitton G. and B. Koopman, “Bacterial and Enzymatic Bioassays for Toxicity Test in the Environment”, Revise Environmental Contaminant Toxicology, pp 1-25(1992)
7. Bleckmann C. A., B. Rabe, S. J. Edgmon, and D. Fillingame, “Aquatic Toxicity Variability for Fresh and Saltwater Species in Refinery Wastewater Effluent”, Environmental Toxicology and Chemistry 14(7), pp. 1219-1223(1995)
8. Boluda R., J. F. Quintanilla, J. A. Bonilla, E. Sáez,and M. Gamón, “Application of the Microtox® Test and Pollution Indices To the Study of Water Toxicity in the Albufera Natural Park (Valencia, Spain) ”, Chemosphere, 46(2), pp. 355-369(2002)
9. Bowers A. R., “Chemical Oxidation of Toxic, Inhibitory, and Refractory Organics” Environmental Toxic Chemistry 9(10),pp 1128-1135(1990)
10. Bulich A. A. “Bioluminescence Assays”, in Toxicity Testing Using Microorganisms, Process Biochem, 1, pp57-74(1986)
11. Bulich A. A., “A Practical and Reliable Method For Monitoring the Toxicity of Aquatic Sample”, Process Biochem, pp.45-47(1982)
12. Chen Q., A. Nijenhuis, H. Preusting, J. Dolfing, D. B. Janssen, and B. Witholt, “Effects of Octane on the Fatty Acid Composition and Transition Temperature of Pseudomonas Oleovorans Membrane Lipids during Growth in Two-Liquid-Phase Continuous Cultures”, Enzyme and Microbial Technology 17(7), pp. 647-652 (1995)
13. Clarkson N., C. J. Redshaw, J. W. Leftley, D. T. Meldrum, and J. Watson, “Evaluation of an Algal Bioassay Cage-Culture Turbidostat Method for the Toxicity Assessment of Effluents”, Marine Environmental Research, 47(2), pp. 157-173(1999)
14. Eckenfelder J. W. W., and J. L. Musterman, “Activated Sludge Treatment of Industrial Wastewater”, Technomic Publishing Company, Lancaster, pp40-64 (1992)
15. Eckenfelder, W. W., and P. W. Landford, “Toxicity Reduction in Industrial and Municipal Effluents-the State of the Art” International Journal Environment and Pollution, 1(1/2), pp 29-43(1991)
16. Eliasen R., P. H. King, and R. K. Linsley, Wastewater Engineering Treatment, Disposal, and Reuse, 3rd Ed, McGraw-Hill Book Co, pp 101-105(1991)
17. FeakinM S. J., E. Blackburn, and R. G. BurnsM, “Inoculation of Granular Activated Carbon in a Fixed Bed with s-Triazine-Degrading Bacteria as a Water Treatment Process”, Water Research 29(3), pp. 819-825(1995)
18. Ghosh S. K. and P. B. Doctor, “Toxicity Screening of Phenol Using Microtox”, Environmental Topical Water Quality 72(2), pp 157-163 (1992)
19. Gibbons J. S., T. G. Kovacs, R. H. Voss, B. I. Oconnor and J. G. Dorica, “An Appraisal of the Effect of Biological Treatment on the Environmental-Quality of High-Yield Mechanical Pulping Effluents” Water Research, 26(11), pp 1425-1432 (1992)
20. Gutiérrez M.,. J. Etxebarria, and de las Fuentes. L. “Evaluation of Wastewater Toxicity: Comparative Study Between Microtox® and Activated Sludge Oxygen Uptake Inhibition ”, Water Research 36 (4), pp. 919-924(2002)
21. Hao O. J., C. J. Shin, C. F. Lin, F. T. Jeng, Z. C. Chen, “Use of Microtox Tests for Screening Industrial Wastewater Toxicity”, Water Science and Technology 34(10), pp. 43-50(1996)
22. Holt J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams, “Bergey’’s Manual of Determinative Bacteriology 9th ed”, Williams & Wilkins(1994)
23. Holt, J. G., and N. R. Krieg, “Bergey’’s Manual of Systematic Bacteriology”, Williams & Wilkins (1984)
24. HQ L., Matsuda I., and Y. Fujise, “Ichiyama-A.,Short-Chain Acyl-CoA-Dependent Production of Oxalate from Oxaloacetate by Burkholderia-Glumae, a Plant Pathogen Which Causes Grain Rot and Seedling Rot of Rice via the Oxalate Production.”, Journal Of Biochemistry ,126(1), pp 243-253(1999)
25. http://www.azurenv.com/
26. Kellerhals M. B., W. Hazenberg,and B. Witholt, “High Cell Density Fermentations of Pseudomonas Oleovorans for the Production of mcl-PHAs in two-liquid phase media .”Enzyme and Microbial Technology 24(1-2), pp. 111-116(1999)
27. Landford, P. W., and W. W. Eckenfelder, “Toxicity Reduction in Industrial Effluents” van Nostrand Reinhold, New York, NY.(1990)
28. Lewandowski, G. A. “Batch Biodergradation of Industrial Organic Compounds using Mixed Liquor from Different POTWs” Water Research, 12(6), pp 803-809(1990)
29. Lin, C. F., and O. J. Hao, and F. T. Jeng, “Microtox Evaluation of Industrial Wastewaters”, Water Science And Technology, 30(10), pp 97-106(1994)
30. Microbics corporation., 1992. Microtox Manual. A Toxicity Testing Handbook.(2000)
31. Mills, W. B., D. B. Porcella, and M. J. Ungs, S. A. Gherini. K. V. Summers, L. Mok, G. L. Bowie, and D. A. Haith, “Water Quality Assessment:A Screening Procedure for Toxic and Conventional Pollutants in surface and Ground Water ”, Office of Research and Development, U. S. EPA, Athens, GA, U.S.A. (1985)
32. Nguyen T. K. O. and B. E. Bengtsson, “Toxicity to Microtox, Micro-Algae and Duckweed of Effluents from the Bai Bang Paper Company (BAPACO), a Vietnamese Bleached Kraft Pulp and Paper Mill”, Environmental Pollution, 90(3), pp. 391-399(1995)
33. Oanh N. T. K., and B. E. Bengtsson, “Development of a Wastewater Monitoring Program Incorporated into Process Control for Mitigation of Chemical and Fiber Loss from the Bai Bang Paper Company (BAPACO), a Bleached Kraft Pulp and Paper Mill in Vietnam ”, Resources, Conservation and Recycling 14(1), pp. 53-66(1995)
34. Prashanth K., M. P. Ranga R., Madhava A., and R. Kanungo, “Corneal Perforation Due to Acinetobacter junii: A Case Report”, Diagnostic Microbiology and Infectious Disease 37(3), pp. 215-217(2000)
35. Qureshi A. A., R. N. Coleman, and J. H. Paran, “Evaluation and Refinement of The Microtox Test for Use in the Toxicity Screening”, Bull. Environ. Contam. Toxicol., 35, p. 443-451.(1985)
36. Robert J. S., and S. J. B. Duff, “Coagulation and Precipitation of a Mechanical Pulping Effluent-II. Toxicity Removal and Metal Salt Recovery”, Water Resarch, 30(4), pp 793-798 (1996)
37. Slabbert J. L. and E. A. Venter, “Biological Assays for Aquatic Toxicity Testing”, Water Science and Technology 39(10), pp. 367-373(1999)
38. Sorvari, J., and M. Sillanpää, “Influence of Metal Complex Formation on Heavy Metal and Free EDTA and DTPA Acute Toxicity Determined by Daphnia Magna”, Chemosphere, 33(6), pp. 1119-1127(1996)
39. Stephenson R. J. and S. J. B. Duff, “Coagulation and Precipitation of a Mechanical Pulping Effluent-II. Toxicity Removal and Metal Salt Recovery”, Water Research 30(4), pp. 793-798(1996)
40. van Benschoten, J. E., and J. K. Edzwald, “Measuring Aluminum During Water Treatment:Methodology and Application” J. American Water Work Assoc., 82(5), pp 71-78(1990)
41. Vermace M. E., R. F. Christensen, and G. F. Parkin, Relationship Between the Concentration of Denitrifiers and Pseudomonas spp. in Soils: Implications for BTX Bioremediation Water. Research. 30(12),pp 3139-3145(1996)
42. Yen N. T., N. T. K. Oanh, L. B. Reutergardh, D. L. Wise, and N. T. T. Lan, “An Intergrated Waste Survey and Environmental Effects of COGIDO, a Bleached Pulp and Paper Mill in Vietnam, on the Receiving Waterbody”, Resources Conservation and Recycling 18(1-4), pp. 161-173(1996)
43. 王鵬堯、廖述良、曾迪華,「新竹科學工業園區污水處理廠各處理單元操作績效指標之建立期末報告」,國立中央大學環境工程研究所(1999)
44. 石濤,「環境微生物」,鼎茂圖書,三版,台北,(2000)
45. 吳先琪,「廢水微生物學」,國立編譯館,台北,第508-523頁(2000)
46. 李季眉、張怡塘、姜昀先,「毒性減量-評估與管制」,國立編譯館,台北,第1-8頁(1998)
47. 李界木,「科學園區管理局之環保措施與管理」,專題演講,國立中央大學(2002)
48. 陳仁全,「工業廢水生物特性探討」,碩士論文,國立台灣大學環境工程學研究所,台北,第38-68頁(1994)
49. 陳俊能,「工業區廢水前處理管制策略探討」,碩士論文,國立中興大學環境工程研究所,台中,(1998)
50. 陳重元、林志高、高正忠、張鎮南、林國清、葉瑞堂、鄭啟裕,「生物毒性篩選試驗研究」,國立交通大學環境工程研究所(1994)
51. 陳國誠,「廢水生物處理學」,茂昌圖書有限公司,台北,第99-102頁(1991)
52. 陳睿斌,「應用分子生物技術進行生物處理程序菌相之研究」,碩士論文,國立中央大學環境工程研究所,桃園,第49-60頁(2001)
53. 陸志德,「高科技產業相關水體中揮發性有機物分析之研究」,碩士論文,國立清華大學原子科學系,新竹,第101-114頁(2001)
54. 彭中豪,「脫色菌Pseudomonas luteola以SBR系統處理實際染整廢水之探討」,碩士論文,私立逢甲大學土木及水利工程研究所,台中,第1-10頁(2000)
55. 黃昭斌,「以微生物毒性試驗法評估工業廢水毒性之研究」,碩士論文,國立中興大學環境工程研究所,台中,第3-18頁(1996)
56. 黃提源、李公哲、范松衡、洪益夫、陳重元、郭坤明、 張致遠、董良生、劉佳鈞、鍾淑姬、羅振光,「新竹科學園區環境保護監督小組年度報告」(2001)
57. 廖述良,「新竹科學工業園區污水處理系統處理藥劑使用量評估期末報告」,國立中央大學環境工程研究所(2001)
58. 廖述良、曾迪華、廖萬里、葉在中,「純氧曝氣技術處理含特殊成分工業廢水研究」,期末總結報告,國立中央大學環境工程研究所(1999)
59. 歐陽嶠暉,「下水道工程學」,長松出版社,增訂版,台北,第395-405頁(1997)
60. 歐陽嶠暉,「活性污泥處理法」,環工生物程序講義,第37-64頁,國立中央大學(2001)
61. 「物質安全資料表及標示參考範例」,行政院勞工委員會(1997)
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2002-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明