博碩士論文 89326005 詳細資訊


姓名 郭威良(Wei-Liang Kuo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多段進流去氮除磷系統動態處理特性之研究
(The research of dynamic treatment characteristics of step-feeds system in removal nitrogen and phosphorus)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 活性污泥法及其相關之修正方法應用廣泛,但每日實際流入污水處理廠之污水量會隨時間、地區而有所變動,一般處理廠面對變動負荷常採用之應變策略包括於污水處理系統之進流端設置調勻池、考量安全因子設計及以長期累積的經驗做為修正操作與控制的依據等。然而這些策略均不具時效性或增加建設成本,因此BNR程序(Biological Nutrient Removal Process)面臨動態進流操作時,對於處理系統的處理效率與最佳化操控將是一個考驗。本研究使用TNCU-3(Taiwan National Central University-3)模廠進行研究。
穩態操作控制在SRT=10天、進流Q=240ml/min、COD=300mg/L、TN=40mg/L、TP=5mg/L以及HRT約9.5小時,各試程以分流比Q1:Q2:Q3=1:0:0:0、0.9:0.1:0、0:8:0.2:0、0.7:0.3:0、0.8:0.1:0.1、0.7:0.2:0.1迴流污泥比Qr=0.5Q共六組試程進行操作,其出流水SCOD均小於20mg/L,去除率達94%以上,出流水中皆檢測不到溶解性之正磷酸鹽及TP,SS約在6~14 mg/L之間,TN去除率約在69.2%~76.4%,對於各營養鹽併同去除的效率均高於一般的BNR程序。
動態操作則控制在SRT=14.6天、進流Q=80~240ml/min、COD=100~300mg/L、TN=25~40mg/L、TP=3~5mg/L以及HRT約9.5~14小時,六種分流以兩種Qr:Q=0.5及0.25共12組試程操作,並輔以電腦監測水質項目,電腦監測結果為:厭氧段ORP=-50~370 mV、厭氧段pH =6.3~6.9、好氧第一槽DO=1.5~4(mg/L)、出流水COD=4~15(mg/L)、出流水NO3-=5~14(mg/L)、出流水pH =7~7.5、出流水SS=2~10(mg/L)、迴流污泥RSS=2800~6800(mg/L)。
另24小時之批次實驗結果發現各試程總F/M介於0.15~0.18之間,平均MLSS約1,600~2,000mg/L較穩態為低,受進流端厭氧段的F/M比影響較大,當厭氧段F/M較高時,整個模廠反應槽的平均MLSS有較高之趨勢。兩段分流之MLSS稀釋效應較明顯,約有200~400 mg/L之稀釋現象。各試程出流水COD約在4~12 mg/L之間,去除率均可達93%以上,與穩態操作類似。各試程出流水硝酸鹽濃度約5~11mg/L,去除率約65~84%。以缺氧槽及好氧槽為控制體積時,可發現缺氧槽的C/N越高,則好氧槽殘留的硝酸鹽越低。缺氧第一槽C/N控制在4~8之間可使好氧第三槽殘餘NOx介於5~8 mg/L之間,缺氧第二槽的C/N控制介於3~5之間,好氧第四槽殘餘的NOx則僅剩下5~7 mg/L。磷的去除效率明顯低於穩態操作,動態操作出流水的正磷酸鹽濃度介於0.03~0.7 mg/L,去除率介於68.2~98.7%,動態操作時所有試程中去氮除磷效果以試程0.7:0.2:0.1最好。
摘要(英) Activated Sludge Process and its modified methods had used very widely. The daily wastewater quality would vary with time or in different regions. Generally, the strategies treating the dynamic inflow in wastewater treatment plants were used to set up equilibrium basins, design by safe factors and long-term experiences as modified operations and control rules. However, these strategies were not efficient methods or increased the capital cost. Therefore, it is a test for the efficiencies and the optimal operations of BNR process(Biological Nutrient Removal Process) during the dynamic inflow. TNCU-3 process (Taiwan National Central University-3) is used in this research.
It is controlled that SRT was 10 days, inflow quantity Q was 240ml/min, COD was 300mg/L, TN was 40mg/L, TP was 5mg/L and HRT was 9.5 hours in steady state. The six runs were operated at Q1:Q2:Q3 was 1:0:0:0, 0.9:0.1:0, 0:8:0.2:0, 0.7:0.3:0, 0.8:0.1:0.1 and 0.7:0.2:0.1 and the return sludge rate Qr was 0.5Q. The effluent SCOD was less than 20mg/L and the removal efficiency more than 94%. The effluent phosphate and phosphorus weren’t detected. The suspended solid was about 6 to 14 mg/L. The removal efficiency of total nitrogen was about 69.2% to 76.4%. All of the nutrient removal efficiencies in TNCU-3 were higher than other BNR processes.
It is controlled that SRT was 14.6 days, inflow quantity Q was 80 to 240ml/min, COD was 100 to 300mg/L, TN was 25 to 40mg/L, TP was 3~5mg/L and HRT was about 9.5 to 14 hours in dynamic operations. 6 step-feed runs were separated to Qr:Q was 0.5 and 0.25. In summary 12 runs operated and monitored the treatment qualities by computer. The computer monitoring results as followings: ORP was -50 to 370 mV in anaerobic zone, pH was 6.3 to 6.9 anaerobic zone, DO was 1.5 to 4(mg/L)in aerobic-1 zone、effluent COD was 4 to 15(mg/L), effluent nitrate was 5 to 14(mg/L), effluent pH was 7 to 7.5 effluent SS was 2 to 10(mg/L) and the return suspended solids was 2800 to 6800(mg/L)。
In 24 hours batch experiments the total F/M of the process was 0.15 to 0.18. Average MLSS was about 1,600 to 2,000mg/L and less than steady-state. It was influenced by F/M in anaerobic zone. When the F/M was high in anaerobic zone the average MLSS would be high in whole process. MLSS was diluted 200 to 400 mg/L and was obviously in two step-feed. Effluent COD in each run was about 4 to 12 mg/L and its removal efficiency was higher than 93%. This result was similar to steady-state. Effluent nitrate was 5 to 11 mg/L and its removal efficiency was 65 to 84%. It was found when the C/N was high in anoxic zone then the remaining nitrate in aerobic zone would be low if the control volume was anoxic zone and aerobic zone. When the C/N was controlled between 4 to 8 in 1st anoxic zone the remaining nitrate would be between 5 to 8 mg/L in 3rd aerobic zone. When the C/N was controlled between 3 to 5 in first 2nd anoxic zone the remaining nitrate would be between 5 to 7 mg/L in 4th aerobic zone. The removal efficiency of phosphorus is obviously less than steady-state. Effluent phosphate was about 0.03 to 0.7 mg/L in dynamic operation and its removal efficiency is between 68.2 to 98.7%. The optimal efficiency of nutrient removal was run-0.7:0.2:0.1 in the research.
關鍵字(中) ★ 多段進流
★ BNR程序
★ 去氮除磷
★ 動態處理
關鍵字(英) ★ step-feeds
★ nitrogen and phosphrous removal
★ BNR process
★ dynamic treatment
論文目次 誌謝
摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
圖目錄 Ⅶ
表目錄 Ⅹ
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧 4
2.1 活性污泥法BNR程序之沿革與發展 4
2.2 活性污泥法BNR程序之機制原理 10
2.2.1 氮的代謝 11
2.2.2 氮的硝化作用 12
2.2.3 氮的脫硝作用 13
2.2.4 磷的代謝 14
2.3 動態操作監測項目與擾動因子 17
2.3.1 BNR程序自動化監測項目 17
2.3.2 BNR程序自動化控制項目 18
2.4 活性污泥法BNR程序動態操作與監控發展 25
第三章 實驗設備與方法 29
3.1 實驗模廠設備 29
3.2 實驗自動監控設備 32
3.2.1 自動監測設備 33
3.3 實驗基質 39
3.4 實驗計畫 41
3.4.1 實驗架構 41
3.4.2 實驗試程 43
3.5 實驗分析方法與設備 44
3.5.1 分析方法 44
3.5.2 分析設備 45
第 四 章 實驗結果與討論 46
4.1 穩態操作各試程水質特性 46
4.2 動態操作各試程水質特性 48
4.2.1 不分流操作 1:0:0系列(Run-1及Run-2) 49
4.2.2 不分流動態操作處理特性 59
4.3 兩段分流操作 62
4.3.1 0.9:0.1:0系列(Run-3及Run-4) 62
4.3.2 0.8:0.2:0系列(Run-5及Run-6) 73
4.3.3 0.7:0.3:0系列(Run-7及Run-8) 83
4.3.4 兩段分流動態操作處理特性 95
4.4 三段分流操作 96
4.4.1 0.8:0.1:0.1系列(Run-9及Run-10) 96
4.4.2 0.7:0.2:0.1系列(Run-11及Run-12) 107
4.4.3 三段分流動態操作處理特性 117
4.5 電腦監測資料 119
4.5.1 不分流操作電腦監測資料 119
4.5.2 兩段分流操作電腦監測資料 120
4.5.3 三段分流操作電腦監測資料 122
4.6 綜合討論 125
4.6.1 不同試程處理特性 125
4.6.2 監控指標參數 130
第五章 結論與建議 132
5.1 結論 132
5.2 建議 133
參考文獻 136
附錄 141
附錄一 各試程好氧槽DO濃度變化 142
附錄二 各試程反應槽平均COD濃度變化圖 145
附錄三 各試程厭氧段氨氮濃度變化圖 148
附錄四 各試程缺氧槽C/N變化圖 150
附錄五 LAB VIEW圖控軟體介面 154
附錄六 電腦監測資料 155
附錄七 各反應槽平均MLSS變化圖 161
參考文獻 Barros, Pericles R.; Carlsson, Bengt (1998) “Iterative design of a nitrate controller using an external carbon source in an activated sludge process” Water Science and Technology 37(12) 95-102
BeaubienM, A.; Hu, Y.; Bellahcen, D.; Urbain, V.; Chang, J.(1995) “Monitoring metabolic activity of denitrification processes using gas production measurements” Water Research 29(10), 2269-2274
Brouwer, Harry; Bloemen, Michiel; Klapwijk, Bram; Spanjers, Henri (1998) “Feedforward control of nitrification by manipulating the aerobic volume in activated sludge plants” Water Science and Technology 38(3) 245-254
Bundgaard, E.; Nielsen, M. K.; Henze, M. (1996) “Process development by full-scale on-line tests and documentation” Water Science and Technology 33(1) 281-287
Chang, W. C.; Ouyang, C. F.; Chiang, W. L.; Hou, C. W. (1998) ”Sludge pre-recycle control of dynamic enhanced biological phosphorus removal system: an application of on-line fuzzy controller” Water Research 32(3) 727-736
Ekama, George A.; Wentzel, Mark C. (1999) “Difficulties and developments in biological nutrient removal technology and modeling” Water Science and Technology 39(6) 1-11
Euiso, Choi; Daewhan, Rhu; Zuwhan, Yun; Euisin, Lee (1998) “Temperature effects on biological nutrient removal system with weak municipal wastewater” Water Science and Technology 37(9) 219-226
Fuerhacker, M.; Bauer, H.; Ellinger, R.; Sree, U.; Schmid, H.; Zibuschka, F.; Puxbaum, H. (2000) “Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors” Water Research 34(9) 2499-2506
H., S. Lee; Joseph, H. W. Lee (1995) “Continuous monitoring of short term dissolved oxygen and algal dynamics” Water Research 29(12). 2789-2796
Hallin, S.; Lindberg, C.-F.; Pell, M.; Plaza, E.; Carlsson, B. (1996) “Microbial adaptation, process performance and a suggested control strategy in a pre-denitrifying system with ethanol dosage” Water Science and Technology 34(1-2) 91-99
Hoen, K.; Schuhen, M.; Kohne, M. (1996) “Control of nitrogen removal in wastewater treatment plants with predenitrification, depending on the actual purification capacity” Water Science and Technology 33(1) 223-236
Gernaey, A.Krist; Petersen, Britta; Ottoy, Jean-Pierre; Vanrolleghem, Peter (2001) “Activated sludge monitoring with combined respirometric–titrimetric measurements” Water Research 35(5), 1280-1294
Gernaey, Krist; Bogaert, Herwig; Vanrolleghem, Peter; Massone, Alessandro; Rozzi, Alberto; et. al. (1998) “A titration technique for on-line nitrification monitoring in activated sludge” Water Science and Technology 37(12) 103-110
Gustaf Olsson, Bob Newell (1999) “Wasterwater Treatment Systems Modelling, Diagnosis and Control” IWA publishing
Isaacs, S.; Mah, Terry; Maneshin, S. K. (1998) “Automatic monitoring of denitrification rates and capacities in activated sludge processes using fluorescence or redox potential” Water Science and Technology 37(12) 121-129
Islam, K. Ashraf; Newell, Bob; Lant, Paul (1999) “Advanced process control for biological nutrient removal” Water Science and Technology 39(6) 97-103
Jeppsson, Ulf; Diehl, Stefan (1996) “On the modelling of the dynamic propagation of biological components in the secondary clarifier” Water Science and Technology 34(5-6) 85-92
Kalker, T. J. J.; van Goor, C. P.; Roeleveld, P. J.; Ruland, M. F.; Babu?ka, R. (1999) “Fuzzy control of aeration in an activated sludge wastewater treatment plant: design, simulation and evaluation” Water Science and Technology 39(4) 71-78
Klapwijk, A.; Brouwer, H.; Vrolijk, E.; Kujawa, K. (1998) “Control of intermittently aerated nitrogen removal plants by detection endpoints of nitrification and denitrification using respirometry only” Water Research 32(5) 1700-1703
Lee, T. T.; Wang, F. Y.; Newell, R. B. (1999) “On the modelling and simulation of a BNR activated sludge process based on distributed parameter approach” Water Science and Technology 39(6) 79-88
Leeuw, E. J.; Kramer, J. F.; Bult, B. A.; Wijcherson, M. H. (1996) “Optimization of nutrient removal with on-line monitoring and dynamic simulation” Water Science and Technology 33(1) 203-209
Lindberg, C.-F.; Carlsson, B. (1996) “Estimation of the respiration rate and oxygen transfer function utilizing a slow DO sensor” Water Science and Technology 33(1) 325-333
Lindberg, Carl-Fredrik; Carlsson, Bengt (1996) “Nonlinear and set-point control of the dissolved oxygen concentration in an activated sludge process” Water Science and Technology 34(3-4) 135-142
Lindberg, Carl-Fredrik; Carlsson, Bengt (1996) “Adaptive control of external carbon flow rate in an activated sludge process” Water Science and Technology 34(3-4) 173-180
Lindberg, Carl-Fredrik (1998) “Multivariable modeling and control of an activated sludge process” Water Science and Technology 37(12) 149-156
Lukasse, L. J. S.; Keesman, K. J.; Klapwijk, A.; van Straten, G. (1998) “Optimal control of N-removal in ASPs” Water Science and Technology 38 (3) 255-262
Maharaj, I.; Elefsiniotis, P. (2001) “The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters” Bioresource Technology 76(3) 191-197
Mark, Ole; Hernebring, Claes; Magnusson, Peter (1998) “Optimisation and control of the inflow to a wastewater treatment plant using integrated modelling tools” Water Science and Technology 37(1) 347-354
Martin Côtê, Bernard P. A. Grandjean, Paul Lessard and Jules Thibault (1995) “Dynamic modeling of the activated sludge process : improving prediction using neural networks” Water Research 29(4) 995-1004,
Maurer, M.; Gujer, W. (1995) “Monitoring of microbial phosphorus release in batch experiments using electric conductivity” Water Research 29(11), 2613-2617
Meredith, Doug; Maidment, Clive; Gibbs, Kim (1998) “Total ammonia monitoring using an optrode and an electrochemical sample pH adjusting system” Water Science and Technology 37(12) 301-307
Messenger, J. R.; Smith, J. C.; Tetreault, M. J.; Vitasovic, C.; Zhou, S.; Scott, P.; Kozicki, M (1999) “The use of dynamic BNR and two-dimensional clarifier modelling to investigate nitrogen removal at Eastern Treatment Plant, Melbourne, Australia” Water Science and Technology 39(6) 89-96
Michael Häck and Manfred Köhne (1996) “Estimation of wastewater process parameters using neural networks”, Water Science and Technology 33(1) 101-115
Mohamed F. Hamoda, Ibrahim A. Al-Ghusain and Ahmed H. Hassan (1999) “Integrated wastewater treatment plant performance evaluation using artificial neural networks” Water Science and Technology Tech. 40(7) 55-65
Movva Reddy (1998) “Biological and Chemical Systems for Nutrient Removal” Water Environment Federation
Ohtsuki, T.; Kawazoe, T.; Masui, T. (1998) “Intelligent control system based on blackboard concept for wastewater treatment processes” Water Science and Technology 37(12) 77-85
Onnerth, T. B.; Nielsen, M. K.; Stamer, C (1996) “Advanced computer control based on real and software sensors” Water Science and Technology 33(1) 237-245
Petruck, Andreas; Cassar, Andreas; Dettmar, Joachim (1998) “Advanced real time control of a combined sewer system” Water Science and Technology 37(1) 319-326
Pitman, A. R. (1999) “Management of biological nutrient removal plant sludges — Change the paradigms?” Water Research 33(5) 1141-1146
Plisson-Saune, S.; Capdeville, B.; Mauret, M.; Deguin, A.; Baptiste, P. (1996) “Real-time control of nitrogen removal using three ORP bending-points: signification, control strategy and results” Water Science and Technology 33(1) 275-280
Pochana, Klangduen; Keller, Jurg (1999) “Study of factors affecting simultaneous nitrification and denitrification (SND)” Water Science and Technology 39(6) 61-68
Solley, David; Barr, Keith (1999) “Optimise what you have first! Low cost upgrading of plants for improved nutrient removal” Water Science and Technology 39(6) 127-134
Steffens, M.A.; Lant, P.A (1999) “Multivariable control of nutrient-removing activated sludge systems” Water Research 33(12) 2864-2878
Stevens, Gerald M.; Barnard, James L.; Rabinowitz, Barry (1999) “Optimizing Biological Nutrient Removal in anoxic zones” Water Science and Technology 39(6) 113-118
Surmacz-Gorska, Joanna; Gernaey, Krist; Demuynck, Carl; Vanrolleghem, Peter; Verstraete, Willy (1996) “Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements” Water Research 30(5) 1228-1236
Tonkovic, Zlatko (1998) “Aerobic stabilisation criteria for BNR biosolids” Water Science and Technology 38(2) 133-141
Vanukuru, Balasubramanyam; Flora, Joseph R. V.; Petrou, Michael F.; Aelion, C. Marjorie (1998) “Control of pH during denitrification using an encapsulated phosphate buffer” Water Research 32(9) 2735-2745
Wilcox, S. J. (1995) “A neural network, based on bicarbonate monitoring, to control anaerobic digestion” Water Research, 29(6) 1465-1470
Yagi, S.; Shiba, S. (1999) “Application of genetic algorithms and fuzzy control to a combined sewer pumping station” Water Science and Technology 39(9) 217-224
Yu, R.-F.; Liaw, S.-L.; Chang, C.-N.; Lu, H.-J.; Cheng, W.-Y. (1997) “Monitoring and control using on-line ORP on the continuous-flow activated sludge batch reactor system” Water Science and Technology 35(1) 57-66
Zhao, H.; IsaacsM, S. H.; Soeberg, H.; KummelM, M. (1995) “An analysis of nitrogen removal and control strategies in an alternating activated sludge process” Water Research 29(2) 535-544
歐陽嶠暉,(2000)下水道工程學,長青出版社
周裕然、郭威良、黃浩梁、歐陽嶠暉, ”厭氧及多段好氧-缺氧去氮除磷程序處理營養鹽污水之特性”, 國立中央大學環境工程學刊 第七期, 民國九十年
蔡勇斌、吳明洋、歐陽嶠暉、蔣偉寧,”動態活性污泥程序即時操作控制之研究”,中國土木水利工程學刊 第八卷 第二期, 民國八十五年
龔偉隆,”污水AO處理程序操作策略比較之研究”,國立中央大學碩士論文,民國八十五年
侯清文,”生物營養鹽去除系統自動監控之研究”,國立中央大學碩士論文,民國八十四年
指導教授 歐陽嶠暉(Chaio-Fuei Ouyang) 審核日期 2002-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡