博碩士論文 89326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.141.8.247
姓名 謝瑜芬(Yu-Fen Hsieh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以SCR觸媒破壞氣相中戴奧辛之初步探討
(Preliminary study on the destruction of gaseous PCDD/Fs with SCR catalyst)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於PCDD/F控制技術當中,觸媒處理技術屬於管末控制中唯一對PCDD/F有破壞分解效果,利用觸媒控制煙道氣中PCDD/Fs,戴奧辛會氧化分解達到排放減量的目的,控制戴奧辛的觸媒主要為五氧化二釩觸媒,一般俗稱selective reduction catalystic (SCR) catalyst,戴奧辛物種經過觸媒催化後會以CO2、H2O及HCl的形式排放。本研究將嘗試利用SCR觸媒技術,控制焚化過程中氣相戴奧辛污染物。探討在不同的操作條件下,煙道排放氣體中戴奧辛物種的破壞分解效率與觸媒操作之控制因子,同時也對物種間催化分解的反應作初步研究,期掌握SCR觸媒在操作上之反應特性。
研究結果顯示溫度條件影響1,2,3,4-TCDD與OCDD物種於觸媒表面吸附與脫附之速率;於系統中,較低氯數物種其轉化速率比高氯數物種率為大;操作溫度與副產物之關係,當反應溫度較低時,反應產物較具多樣性,偵測到其他同源物種的機率增加,隨溫度提升偵測到其他同源物之機率也隨之降低,系統對戴奧辛之減毒效果亦與溫度成正相關。反應過程中,氧氣含量對影響物種吸附於觸媒之比例,OCDD物種在氧氣含量0%時吸附比例與供氧10%時相差七倍。影響較為顯著為水氣含量,水氣含量增加提升物種OCDF的去除效率,對去除OCDD則無顯著影響,同時改變OCDD與OCDF物種吸附於觸媒表面之比例,出流氣體中所含物種種類亦受水氣含量影響,反應過程中經由OCDD脫氯生成其他物種之機率增加,水氣含量為10%時,氣體中出現六氯與五氯物種。以戴奧辛物種的毒性當量來看,水氣的添加使觸媒系統對戴奧辛毒性的去除率減低,系統中水氣的存在提高了出流氣體毒性風險。比較OCDD與OCDF兩物種經,OCDD經觸媒反應器反應後,生成其他17種同源物種的機率低於OCDF物種,且於相同條件下OCDF經觸媒催化分解之效率低於OCDD,兩物種在反應器中生成其他PCDD/F同源物之機率以OCDF較為顯著。以戴奧辛物種的毒性當量來看,OCDD與OCDF兩物種經反應後,毒性當量的去除率分別為99.8% 與-51.9%,OCDF經反應後造成毒性當量增加的現象,顯示deDioxin觸媒催化OCDF物種分解之效果較OCDD分解為低。
摘要(英) Selective catalytic reduction (SCR) units are commonly used in coal-fired power plants for controlling NOx emissions. In some municipal waste incinerators (MSWIs), SCR units have also been installed. In the late 1980s, it was incidentally found that SCR also decomposes polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Oxidation of representative congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated debenzofruans (PCDFs), was investigated on commercial V2O5-WO3/TiO2-based catalysts by passing the gas streams containing specific concentrations of PCDD/Fs at controlled temperature and space velocity in this study.
A decrease in the amount of PCDD/Fs adsorbed on catalyst with increasing reaction temperature was found for species 1,2,3,4-TCDD and OCDD. The conversion rate of 1,2,3,4-TCDD was faster than that of OCDD. At 200℃, one derivate of seventeen 2,3,7,8-substituted dioxin homologues was detected in downstream flow, but no derivates were found at 250℃. Adding oxygen into the gas stream would lower the quantity of OCDD adsorbed on catalyst. Experiment conducted in the presence of water vapor exhibits a higher removal efficiency of species OCDF than that without water vapor. Three derivates of seventeen 2,3,7,8-substituted dioxin homologues are generated from reactant OCDD, and the concentration of toxic equivalent quantity was higher than that without water vapor.
關鍵字(中) ★ SCR觸媒
★ 戴奧辛
★ 氣相
★ 觸媒催化反應
關鍵字(英) ★ V2O5-WO3-TiO2 supported catalyst
★ PCDD/Fs
★ SCR
論文目次 第一章前言.............................1
1.1 研究緣起...................................................................................................... 1
1.2 研究目的與範疇.......................................................................................... 2
第二章文獻回顧....................3
2.1 戴奧辛生成之機制...................................................................................... 3
2.2 焚化過程中戴奧辛之減量技術.................................................................. 3
2.3 去除已生成及爐外再合成之戴奧辛.......................................................... 5
2.3.1 背景....................................................................................................... 5
2.3.2 洗滌塔與袋濾式集塵器結合活性碳注入法....................................... 5
2.3.3 改良式活性碳法去除PCDD/Fs......................................................... 7
2.3.4 戴奧辛之觸媒處理法........................................................................... 7
2.4 觸媒反應機制與原理.................................................................................. 8
2.4.1 觸媒名詞定義....................................................................................... 8
2.4.2 觸媒的活性........................................................................................... 8
2.4.3 觸媒的選擇性....................................................................................... 8
2.4.4 異均相觸媒作用(hreterohomogeneous Catalysis)............................... 9
2.4.5 反應接觸時間....................................................................................... 9
2.4.6 觸媒的老化現象(Deactivation) ......................................................... 10
2.5 選擇性還原觸媒之使用與控制................................................................ 11
2.5.1 選擇性還原觸媒還原法原理............................................................. 11
2.5.2 SCR 系統與設備................................................................................ 11
2.5.3 觸媒的種類與型式............................................................................. 12
2.5.5 SCR 觸媒之組成特性........................................................................ 13
2.5.6 SCR 觸媒失活現象............................................................................ 14
2.6 焚化系統中SCR 觸媒控制PCDD/F 之技術.......................................... 16
2.6.1 PCDD/F 於SCR 觸媒床中分解去除效率........................................ 16
2.6.2 SCR 觸媒催化分解PCDD/F 物種之控制因子................................ 17
2.6.3 實廠運用SCR 觸媒催化分解PCDD/F 之相關研究...................... 22
2.6.3 國內利用SCR 觸媒催劃分解PCDD/F 實例................................... 23
2.6.4 運用SCR 去除PCDD/F 之研擬...................................................... 25
第三章研究方法與設備.....27
3.1 研究方法之流程設計............................................................................... 27
3.2 實驗藥品及試劑........................................................................................ 29
3.3 實驗材料與設備........................................................................................ 30
3.4 戴奧辛分析................................................................................................ 32
3.4.1 樣品前處理......................................................................................... 32
3.4.2 儀器分析條件之設定......................................................................... 38
3-5 觸媒選擇與性質評析............................................................................... 41
3-5-1 觸媒選擇與前處理........................................................................... 41
3-6 實驗設計................................................................................................... 41
3-6-1 觸媒反應器系統設計....................................................................... 41
3-6-2 觸媒反應器試車與前置作業........................................................... 42
3-6-3 操作參數選定................................................................................... 42
3-7 樣品收集與分析....................................................................................... 43
3-8 結果歸納與整理....................................................................................... 43
第四章結果與討論..............45
4.1 HRGC/LRMS 調機規範........................................................................... 45
4.1.1 GC 滯留時間窗建立.......................................................................... 45
4.1.2 檢量線建立與起始校正..................................................................... 45
4.1.3 GC 層析管柱解析度測試.................................................................. 46
4.1.4 儀器靈敏度測試(雜訊比規範) ....................................................... 46
4.1.5 檢量線離子強度比與相對感應因子計算........................................ 48
4.1.6 滯留時間測試..................................................................................... 48
4.1.7 檢量線持續校正................................................................................. 50
4.2 DEDIOXIN 觸媒基本性質說明................................................................... 52
4.3 背景試驗.................................................................................................... 52
4.4 觸媒系統中PCDD/FS 的破壞與去除效率評估...................................... 54
4.4.1 溫度對PCDD/F 催化分解反應之影響........................................... 54
4.4.2 空間流速對PCDD/F 催化分解反應之影響................................... 60
4.4.3 初始濃度對PCDD/F 催化分解反應之影響.................................... 63
4.4.4 氧氣含量對PCDD/F 催化分解反應之影響.................................... 64
4.4.5 水氣含量對PCDD/F 催化分解反應之影響................................... 64
4.4.6 反應時間與PCDD/F 催化分解反應之影響.................................... 65
4.4.7 反應物種與PCDD/F 催化分解反應之影響.................................... 65
4.5 終產物分析............................................................................................... 68
4.5.1 溫度對終產物的影響......................................................................... 68
4.5.2 水氣含量對終產物的影響................................................................. 71
4.5.3 不同PCDD/F 物種其催化分解反應之現象比較........................... 73
4.5.4 反應時間對終產物的影響................................................................. 75
第五章結論與建議..............79
5.1 結論............................................................................................................ 79
5.2 建議............................................................................................................ 81
參考文獻..................................82
參考文獻 1. Addink R. and K. Olie, “Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems”, Environmental Science and Technology, Vol.29, pp.1425-1434(1995)
2. Alemany L. J., F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo and M. Trombetta, “Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts”, Applied Catalysis B: Environmental, Vol.10, pp.299-311(1996).
3. Andersson P., C. Rappe, O. Maaskant, J. F. Unsworth and S. Marklund, “Low temperature catalytic destruction of PCDD/F in flue gas from waste incineration”, Organohalogen compounds, Vol.36, pp.109-248(1998)
4. Ballschmiter K., W. Zoller, C. Scholtz and A. Nottrodt, “Destruction of PCDD and PCDF in bleached pulp by chlorine dioxide treatment”, Chemosphere, Vol.12, pp.585-597(1983)
5. Bielanski A. and J. Haber, “Oxygen in catalysis on transition metal oxides”, Catalyst Review Science Engineering, Vol.19, NO.1, pp.1-41(1979)
6. Bond G. C., “Preparation and properties of vanadia/titania monolayer catalysts”, Applied Catalysis A: General, Vol.157, pp.91-103(1997)
7. Brückner A., “A new approach to study the gas-phase oxidation of toluene: probing active sites in vanadia-based catalysts under working conditions”, Applied Catalysis A: General, Vol.200, pp.287-297(2000)
8. Buekens A. and H. Huang, “Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration”, Journal of Hazardous Materials, Vol.62, pp.1-33(1998).
9. Cesteros Y., F. Medina, J. E. Sueiras, D. Tichit and B. Coq, “Hydrodecholrination of 1,2,4-trichlororbenzene on nickel-based catalysts prepared from several Ni/Mg/Al hydrotalcite-like precursors”, Applied Catalysis B: Environmental, Vol.32, pp.25-35(2001)
10. Choi W., S. J. Hong, Y. S. Chang, and Y. Cho, “Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation”, Environmental Science and Technology, Vol.34, pp.4810-4815(2000)
11. Ferreira M. L. and M. Volpe, “On the nature of highly dispersed vanadium oxide catalysts: effect of the support on the structure of VOx species”, Journal of Molecular Catalysis A: Chemical, Vol.164, pp.281-290(2000)
12. Forzatti P. and L. Lietti, “Catalyst deactivation”, Catalysis Today, Vol.52, pp.165-181(1999)
13. Fritsky K. J., J. H. Kumm and M. Wilken, “Combined PCDD/F destruction and particulate control using a catalytic filter system at a medical waste incineration plant”, Journal of the Air & Waste Management Association, Vol.51, pp.1642-1649(2000)
14. Furrer J., H. Deuber, H. Hunsinger, S. Kreisz A. Linek, H. Seifert, J. Stöhr, R. Ishikawa and K Watanabe, “Balance of NH3 and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant”, Waste Management, Vol.18, pp.417-422(1998)
15. Grabowski R., B. Grzybowska, K. Samson, J. Sloczynski, J. Stoch and K. Wcislo “Effect of alkaline promoters on catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts in oxidative dehydrogenation of propane and in isopropanol dehydrogenation of propane and in isopropanol decomposition”, Applied Catalysis A: General, Vol.125, pp.129-144(1995)
16. Green H. L., D. S. Prakash and K. V. Athota, “Combined sorbent/catalyst media for destruction of halogenated VOCs”, Applied Catalysis B: Environmental, Vol.7, pp.213-224(1996)
17. Gullett B., Raghunathan K. and J. E. Dunn, “The effect of cofiring high-sulfur coal with municipal waste on formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran”, Environmental Engineering Science, Vol.15, pp.59-70(1998)
18. Guliants V. V. , “Structure-reactivity relationships in oxidation of C4 hydrocarbons on supported vanadia catalysts”, Catalysis Today, Vol.51, pp.255-268(1999)
19. Hagenmaier H., K. Horch, H. Fahlenkamp and G. Schetter, “Destruction of PCDD and PCDF in refuse incineration plants by primary and secondary measures”, Chemoshpere, Vol.23, pp.1429(1991)
20. Hums E., M. Joisten, R. Müller, R. Sigling and H. Spielmann, “Innovative lines of SCR catalysis: NOx reduction for sationary diesel engine exhaust gas and dioxin abatement for waste incineration facilities”, Catalysis Today, Vol.27, pp.29-34(1996)
21. Ide Y., K. Kashiwabara, S. Okada, T. Mori and M. Hara, “Catalytic decomposition of dioxin from MSW incinerator flue gas”, Chemosphere, Vol.32, pp.189-198(1996)
22. Jones J. and J. R. H. Ross, “The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases”, Catalysis Today, Vol.35, pp. 97-105(1997).
23. Krishnamoorthy S. and M. D. Amiridis, “Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts”, Catalysis Today, Vol.51, pp.203(1999).
24. Krishnamoorthy S., J. A. Rivas and M. D. Amirides, “Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides”, Journal of Catalysis, Vol.193, pp.264-272(2000)
25. Krishnamoorthy S., J. P. Baker and M. D. Amiridis, “Catalytic oxidation of 1,2-dichlororbenzene over V2O5/TiO2-based catalysts, Vol.40, Catalysis Today, pp.39-46(1998)
26. Lago R. M., M. L. H. Green, S. C. Tsang and M. Odlyha, “Catalytic decomposition of chlorinated organics in air by copper chloride based catalysts”, Applied Catalysis B: Environmental, Vol.l8, pp.107-121(1996)
27. Larrubia M. A. and G. Busca, “An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts” Applied Catalysis B: Environmental, Vol.39, pp. 343-352(2002)
28. Liljelind P., J. Unsworth, O. Maaskant, S. Marklund, “Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, Vol.42, pp.615-623(2001)
29. Liu Y., M. Luo, Z. Wei, Q. Xin, P. Ying and C. Li, “Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts”, Applied Catalysis B: Environmental, Vol.29, pp.61-67(2001)
30. Matralis H. K., C. Papadopoulou, C. Kordulis, A. A. Elguezabal, V. C. Corberan, “Selective oxidation of toluene over V2O5/TiO2 catalysts. Effect of vanadium loading and of molybdenum addition on the catalytic properties”, Applied Catalysis A: General, Vol.126, pp.365-380(1995)
31. Muto H., K. Saitoh and H. Funayama, “PCDD/DF formations by the heterogeneous thermal reactions of phenols and their TiO2 photocatalytic degradation by batch-recycle system”, Chemosphere, Vol.45, pp.129-136(2001)
32. Narayanan S., B. P. Prasad, “Characterization and aniline alkylation activity of vanadia and silica-supported vanadia catalysts”, Journal of Molecular Catalysis A: Chemical, Vol.96, pp.57-64(1995)
33. Parmaliana A., V. Sokolovskii, D. Miceli and N. Giordano, “Highly effective vanadia-silica catalyst for propane oxidative dehydrogenation”, Applied Catalysis A: General, Vol.135, pp.L1-L5(1996)
34. Sakurai T. and R. Weber, “Laboratory test of SCR catalysts regarding the destruction efficiency towards aromatic and chlorinated aromatic hydrocarbons”, Organohalogen Compounds, Vol.36, pp.275-280(1998)
35. Santacesaria E., M. Di. Serio, R. Velotti and U. Leone, “Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst”, Journal Molecular Catalysis, Vol.94, pp.37-46(1994)
36. Schooneboom M. H., H. E. Zoetemeijer, K. Olie, “Dechlorination of octachlorodibenzo-p-dioxin and octachlorodibenzofuran on an alumina support”, Applied Catalysis B: Environmental, Vol.6, pp.11-20(1995)
37. Seong M. J. and P. Grange, “Characterization and reactivity of V2O5-WO3 support on TiO2-SO42- catalyst for the SCR reaction”, Applied Catalysis B: Environmental, Vol.32, pp.123-131(2001)
38. Serio M. D., V. Balato, A. Dimiccoli, L. Maffucci, P. Iengo, E. Santacesaria, “ Kinetic and mass transfer in the hydrogenation of polyunsaturated organic compounds in the presence of supported Pd catalysts”, Catalysis Today, Vol.66, pp.403-410(2001)
39. Shaub, W. M. and W. Tsang, “Dioxin formation in incinerators”, Environ. Sci. Technol., Vol.17, pp.721-730(1983)
40. Shen W. J., Y. Ichihashi, H. Ando, M. Okumura, M. Haruta and Y. Mstsumura, “Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition-precipitation method”, Applied Catalysis A: General , Vol.217, pp.165-172(2001)
41. Singh A. K., D. Chopra, S. Rahmani and B. Singh, “Kinetics and mechanism of Pd(II) catalyzed oxidation of D-arabinose, D-xylose and D-galactose by N-bromosuccinimide in acidic solution”, Carbohydrate Research, Vol.314, pp.157-160(1998)
42. Sung D. Y., D. J. Koh and I. S. Nam, “A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts”, Catalysis Today, Vol.75, pp.269-276(2002)
43. Tagashira K., I. Torii, K. Myouyou, K. Takeda, Mizuko T. and Y. Tokushita, “Combustion characteristics and dioxin behavior of waste fired CFB”, Chem. Eng. Sci., Vol.54, pp.5599-5607(1991)
44. Tonetto G., M. L. Ferreira and D. E. Damiani,“A combined theoretical and experimental study of the effects of residual chlorine on the behavior of Pd/r-Al2O3 catalysts for methane oxidation”, Journal of Molecular Catalysis A: Chemical, Vol.171, pp.123-141(2001)
45. Tundo P., S. Zinovyev and A. Perosa, “Multiphase catalytic hydrogenaiton of p-chlororacetophenonoe and acetophenone. A kinetic study of the reaction selectivity toward the reduction of different functional groups”, Journal of Catalysis, Vol.197, pp.330-338(2000)
46. Tundo P., A. Perosa, M. Selva and S. S. Zinovyev, “A mild catalytic detoxification method for PCDDs and PCDFs”, Applied Catalysis B: Environmental, Vol.32, pp.L1-L7(2001)
47. Wachs I. E., J. M. Jehng, G. Deo, G. M. Weckhuysen, V. V. Guliants and J. B. Benziger, “In situ raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions”, Catalysis Today, Vol.32, pp.47-55(1996)
48. Wachs I. E. and B. M. Weckhuysen, “Structure and reactivity of surface vanadium oxide species in oxide supports”, Applied Catalysis A: General, Vol.157, pp.67-90(1997)
49. Weber R. and T. Sakurai, “Low temperature decomposition of PCB by TiO2-based V2O5-WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics”, Vol.34, pp. 113-127(2001)
50. Weber R., T. Sakurai. and H. Hagenmaier, “Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts”, Applied Catalysis B: Environmental”, Vol.20, pp.249-256(1999).
51. Weber R., M. Plinke, Z. Xu and M. Wilken, “Destruction efficiency of catalytic filters for polychlorinated diobenzo-p-dioxin and diobenzofurans in laboratory test and field operation – insight into destruction and adsorption behavior of semivolatile compounds”, Applied Catalysis B: Environmental, Vol.31, pp. 195-207(2001)
52. Weber R., K. Nagai, J. Nishino, H. Shiraishi, M. Ishida, T. Takasuga, K. Konndo and M. Hiraoka, “Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF”, Chemosphere, Vol.46, pp.1247-1253(2002)
53. Weber R., T. Takasuga, K. Nagai, H. Shiraishi, T. Sakurai, T. Matuda and M. Hiraoka, “Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration”, Chemosphere, Vol.46, pp.1225-1262(2002)
54. Williamson P., “Production and control of polychlorinated dibenzo-p-dioxins and dibenzofurans in incineration systems: a review”, Presented at Proc. 87th AWMA Annual Meeting & Exhibition, Ohio, June Vol.19-24(1994)
55. Zazhigalov V. A., J. Haber, J. Stoch, L. V. Bogutskaya and I. V. Bacheridova “Mechanochemistry as activation method of the V-P-O catalysts for n-butane partial oxidation”, Applied Catalysis A: General, Vol.135, pp.155-161(1996)
56. Zegaoui O., C. Hoang-Van and M. Karroua, “Selective catalytic reduction of nitric oxide by propane over vanadia-titania aerogels”, Applied Catalysis B: Environmental, Vol.9, pp.211-227(1996)
57. 王奕凱、邱宏明、李秉傑, 「非均勻系催化原理與應用」, 渤海堂文化事業有限公司, 民國77年2月初版。
58. 洪宗文, 「氧化鐵觸媒分解戴奧辛技術的新研發」,環境檢驗, 第八期, 第三十八號 , 頁數:17-20(2001)
59. 張書豪,「以活性碳吸附煙道排氣中戴奧辛之初步研究」,國立中央大學環境工程研究所碩士論文, 中壢(2000)
60. 陳郁文、劉端祺 譯,「化學反應工程原理」第三版,東華書局
61. 賴宏德,「再合成及前驅物催化反應與戴奧辛生成特性之初步探討」,國立中央大學環境工程研究所碩士論文, 中壢(1999)
指導教授 張木彬(Moo-Been Chang) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明