博碩士論文 89326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.227.254.12
姓名 謝瑞全(Shui-Chuan Hsieh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 不同表面特性黏土催化水中有機物之氯化反應研究
(Clays catalyzed the reactions between the organic compounds in water and disinfectants (chlorine))
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 分子間作用力影響土壤中非離子有機物傳輸行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水中常見的溶解性有機質,包括腐植酸與黃酸,一直是研究水中消毒副產物形成潛能的重點;自然界水中除了溶解性有機物外,另一影響DBPs形成的重要因子為濁度物質。構成原水中的濁度物質裡,黏土是主要的組成成份,其表面具有催化能力,可促進非生物性反應之進行。
本研究主要藉由含不同組成、數目、位置之OH與COOH官能基的有機物作為前驅物,以含不同交換性陽離子之黏土進行一系列的氯催化反應研究,釐清溶解性有機物與黏土於氯化反應上的反應機制與主要影響因子。
研究結果顯示:反應物本身的性質是影響催化反應的主因,催化劑本身的性質亦是造成生成揮發性DBPs產量不同的因素之一;反應物性質中以含OH官能基有機物有較大的DBPs生成潛能,催化劑則以錳-蒙特石的催化效果最為顯著。不同催化介質所參與的氯化反應,其生成的物種會有所不同,能力亦互異;於含過渡金屬黏土之系統中,以錳-蒙特石催化能力最強;在含鐵陽離子催化劑中,則以鐵-蒙特石催化效果最好。過渡金屬陽離子黏土催化有機物氯化反應後,其生成物種以氯仿最明顯;不同官能基有機物有不同的物種分布,顯示有機物本身的性質將左右催化反應。
摘要(英) To study disinfection by-products formation potential (DBPFP) in water purification system, dissolving organic compounds (DOCs) including humic acid and fulvic acid have recently gained added importance because of the need to determine DOCs reactivity with disinfecting agents. In addition to DOCs, turbility matter is the other important factor to affect the DBPs formation.
In this study, the influences of surface characteristics of clays on organic compounds chlorination in drinking water purification processes were investigated. The characteristics of organic compound and clay affect the amount and species of DBPs on chlorination. Regardless of with and without catalyzer, organic compounds with OH functional group formed a larger number of DBPs than that with COOH functional group. On the other hand, these organic compounds inherent properties played an important role in catalytic reaction on chlorination. Transition –metal clays were obtained from exchanging the original cations of Ca2+-montmorillonites by Ti4+ , Fe3+ , Mn2+ , and Cu2+ cations. The obtained data demonstrated the wide diversities of metal-clay complexes for the catalysis of DBPs. The species and amount of DBPs in metal-clay are much more than the nonmetal-clay on chlorination in water, especially for the Mn2+-montmorillonites. The amount of transition-metal (Fe3+) in catalyzer was also measured. The results showed that the content of transition-metal was not a significant factor to catalyze chlorination reaction. The reactivity of clay and the physics-chemical properties of organic compounds are dominated catalytic reaction on chlorination in water.
關鍵字(中) ★ 消毒副產物
★ 氯化反應
★ 表面催化
★ 不同表面特性黏土
關鍵字(英) ★ chlorination
★ disinfection by-products (DBPs)
★ catalysis
★ clay
★ organic compound
論文目次 目 錄
目 次 頁次
目 錄………………………………………………………………….. I
圖目錄………………………………………………………………….. IV
表目錄………………………………………………………………….. Ⅶ
第一章 前言………………………………………………………….. 1
1-1 研究緣起……………………………………………………. 1
1-2 研究目的與內容……………………………………………. 2
第二章 文獻回顧…………………………………………………….. 3
2-1 有機物之氯化反應…………………………………………. 3
2-1-1水體中有機物的來源與組成………………………... 3
2-1-2 天然有機物---腐植質……………………………….. 4
2-1-3 氯化反應……………………………………………. 10
2-1-4氯與水中有機污染物之反應………………………... 12
2-2 消毒副產物…………………………………………………. 15
2-3 水中揮發性有機物分析……………………………………. 17
2-3-1 揮發性有機物(VOCs)….…………………………... 17
2-3-2水中揮發性有機物(VOCs)的分析方法…………… 18
2-4 水中非揮發性有機物---鹵化乙酸分析………………..…. 20
2-5 黏土與有機物之作用………………………………………. 22
2-5-1表面反應…………………………………………….. 22
2-5-2黏土表面化學反應……………………….………….. 23
2-5-3黏土表面各種狀態…………………………………... 23
2-5-4影響黏土表面反應的因子………………...………… 24
2-5-5黏土礦物與有機物間之作用…………………..…... 26
2-5-5-1氧化反應和電荷轉移反應……………………… 27
目 次 頁次
2-5-5-2氧化聚合反應………………………………….. 27
2-5-5-3重排反應………………………………….…... 28
2-5-5-4水解反應……………………………………... 29
2-5-5-5其 它…………………………………………… 30
第三章 實驗設備、材料與方法………………..…………………….. 31
3-1 實驗架構及內容………………….………………………… 31
3-2 實驗設備……………………………….…………………… 33
3-2-1前處理使用設備……………………………………... 33
3-2-2分析水中揮發性有機物之設備……………………... 35
3-3-3分析水中非揮發性有機物---鹵化乙酸之設備……... 37
3-4 實驗材料………………………………….………………… 39
3-4-1土樣…………………………………………………... 39
3-4-2有機物………………………………………………... 41
3-5 含過渡金屬陽離子黏土製備與性質分析………………… 42
3-5-1含過渡金屬陽離子黏土備製....................................... 42
3-5-2不同表面特性黏土交換性陽離子含量....................... 47
3-5-3黏土上過渡金屬陽離子置換率……………………... 51
3-5-4不同表面特性黏土表面積、孔隙值及孔隙大小測定 51
3-6 水中揮發性有機物分析……………………………………. 53
3-7 水中非揮發性有機物---鹵化乙酸分析…………………… 60
3-8 水中餘氯測定………………………………………….…... 60
第四章 結果與討論………………………………………………….. 64
4-1 不同官能基有機物消毒副產物之生成…………………… 64
4-1-1含不同官能基組成有機物………….……………….. 64
4-1-2含不同位置官能基有機物………….……………..… 69
目 次 頁次
4-2 含不同官能基有機物之消毒副產物生成物種………….… 71
4-3 不同表面特性黏土之消毒副產物生成總量………………. 78
4-3-1黏土催化反應…………………………………….... 78
4-3-2含過渡金屬黏土催化有機物之DBPs生成總量…… 80
4-3-3不同來源含鐵離子土壤之氯化副產物生成量……... 85
4-4 不同表面特性黏土之消毒副產物生成物種………………. 87
4-4-1含過渡金屬陽離子黏土之揮發性DBPs物種……… 87
4-4-2不同來源鐵離子催化之氯化副產物物種…………... 98
4-4-3氯仿的生成機制 103
4-5 非揮發性有機物(鹵化乙酸)分析 108
第五章 結論與建議………………………………………………… 110
參考文獻……………………………………………………………….. 112
附錄A…………………………………………………………………... A-1
附錄B…………………………………………………………………... B-1
圖 目 錄
目 次 頁次
圖 2-1 有機質之分離流程圖………………………………………... 8
圖 2-2 Stevenson所推估的腐質酸結構式……………..…………… 8
圖 2-3 腐植酸的立體結構模型示意圖……………………………... 9
圖 2-4 混凝加入30mg/L alum前後氯化生成總THMs、HAAs情形…………………………………………………………….. 16
圖 3-1 研究流程圖…………………………………………………... 32
圖 3-2 串聯質譜儀內的電壓參數圖………………………………... 40
圖 3-3 蒙特石結構示意圖…………………………...……………… 41
圖 3-4 含過渡金屬黏土樣品備製圖………………………...……… 46
圖 3-5 土壤王水消化法流程圖……………………...……………… 49
圖 3-6 土壤酸性消化法流程圖……………………...……………… 50
圖 3-7 土壤氫氟酸消化法流程圖…………………...……………… 50
圖 3-8 GC/MS AutoTune 之結果…………………………………… 59
圖 4-1 不同官能基有機物生成DBPs總量圖………………….….. 66
圖 4-2 含OH官能基有機物生成總量比較圖…………………….. 68
圖 4-3 含不同數量OH官能基生成DBPs總量比較圖……….…... 71
圖 4-4 鄰苯二酚生成DBPs之物種比例圖………………………... 73
圖 4-5 間苯二酚生成DBPs之物種比例圖………………………... 73
圖 4-6 對苯二酚生成DBPs之物種比例圖………………….………. 74
圖 4-7 苯甲酸生成DBPs之物種比例圖…………………..………... 74
圖 4-8 鄰苯二甲酸生成DBPs之物種比例圖……………………….. 75
圖 4-9 間苯二甲酸生成DBPs之物種比例圖…………………….…. 75
圖 4-10 對苯二甲酸生成DBPs之物種比例圖……………………… 76
圖 4-11 1,2-十二烷基二醇生成DBPs之物種比例圖…………...…. 76
圖 4-12 正己醇生成DBPs之物種比例圖…………………………… 77
圖 4-13 1,8,9-Trihydroxyanthracene生成DBPs之物種比例圖. 77
圖 4-14 過渡金屬陽離子催化含OH官能基有機物之DBPs生成總量…………………………………………………………….. 81
圖 4-15 過渡金屬陽離子催化含OH大分子有機物之DBPs生成總量. 83
圖 4-16 過渡金屬陽離子催化COOH官能基有機物之DBPs生成總量…………………………………………………………….. 84
圖 4-17 含鐵陽離子黏土催化之DBPs生成總量 85
圖 4-18 過渡金屬陽離子催化OH官能基有機物之DBPs生成物種.. 88
圖 4-19 過渡金屬陽離子催化COOH官能基有機物DBPs生成物種…………………………………………………………….. 89
圖 4-20 過渡金屬陽離子催化含OH大分子官能基有機物之DBPs生 成物種……………………………………………………… 89
圖 4-21 鈦-蒙特石催化間苯二酚氯化反應產物生成比例圖………. 91
圖 4-22 鐵-蒙特石催化間苯二酚氯化反應產物生成比例圖………. 92
圖 4-23 錳-蒙特石催化間苯二酚氯化反應產物生成比例圖………. 92
圖 4-24 銅-蒙特石催化間苯二酚氯化反應產物生成比例圖………. 93
圖 4-25 鈦-蒙特石催化鄰苯二甲酸氯化反應產物生成比例圖….… 93
圖 4-26 鐵-蒙特石催化鄰苯二甲酸氯化反應產物生成比例圖….… 94
圖 4-27 錳-蒙特石催化鄰苯二甲酸氯化反應產物生成比例圖….… 94
圖 4-28 銅-蒙特石催化鄰苯二甲酸氯化反應產物生成比例圖….… 95
圖 4-29 鈦-蒙特石催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖……………………………………………… 95
圖 4-30 鐵-蒙特石催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖……………………………………………… 96
圖 4-31 錳-蒙特石催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖……………………………………………… 96
圖 4-32 銅-蒙特石催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖……………………………………………… 97
圖 4-33 含鐵陽離子黏土催化含OH大分子官能基有機物之DBPs生成物種……………………………………………………… 99
圖 4-34 林口土催化鄰苯二酚氯化反應產物生成比例圖………… 99
圖 4-35 氧化鐵催化鄰苯二酚氯化反應產物生成比例圖………… 100
圖 4-36 林口土催化鄰苯二甲酸氯化反應產物生成比例圖……… 100
圖 4-37 氧化鐵催化鄰苯二酚氯化反應產物生成比例圖………… 101
圖 4-38 林口土催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖………………………………………………… 101
圖 4-39 氧化鐵催化1,8,9-Trihydroxyanthracene氯化反應產物生成比例圖………………………………………………… 102
圖 4-40 甲苯之氯化反應…………………………………………… 103
圖 4-41 丙酮加氯產生三鹵甲烷反應機構圖……………………… 104
圖 4-42 過渡金屬陽離子黏土催化高分子凝聚劑氯化反應圖…… 105
圖 4-43 間苯二酚加氯產生三鹵甲烷反應機構…………………… 106
圖 4-44 過渡金屬陽離子黏土催化間苯二酚氯化反應圖………… 107
表 目 錄
目 次 頁次
表 2-1 水體天然有機物的組成……………………………………... 4
表 2-2 有機物與消毒副產物(DBPs)關係…………………………... 5
表 2-3 利用13C NMR方法分析腐質酸與黃酸的官能基…..………. 9
表 2-4 消毒副產物的形態與種類…………………………………... 15
表 3-1 purge & trap與GC/MS分析操作條件……………………… 37
表 3-2 串聯式質譜儀分析條件與參數……………………………... 39
表 3-3 小分子有機物物理化學性質………………………………... 43
表 3-3 (續)小分子有機物物理化學性質…………………………… 44
表 3-4 黏土表面之過渡金屬陽離子置換率………………………... 51
表 3-5 不同表面特性黏土之表面積及孔隙性質…………………... 52
表 3-6 五十四種標準品的物化特性………………………………... 55
表 3-7 五十四種標準品的定性定量離子…………………………... 56
表 3-8 質量之相對感應強度可接受質……………………………... 58
表 3-9 鹵化乙酸的物化特性………………………………………... 61
表 4-1 鄰苯二酚與對苯二酚氯化反應前後濃度變化……………... 81
表 4-2 含鐵金屬陽離子土樣之含鐵重量百分比…………………... 86
表 4-3 利用串連式質譜儀量測HAAs之檢量線方程式與樣品測試值…………………………………………………………….. 109
參考文獻 參考文獻
1.Rook, J. J., “Formation of Haloforms During Chlorination of Natural Waters,” Water Treatment Exam., 23 (5), pp.234-242 (1974).
2.Ueno, H., T. Moto, Y. Sayato, and K. Nakamuro, ”Disinfection By-Products in the Chlorination of Organic Nitrogen Compounds: By-Products form Kynurenine,” Water Science and Technology, 33 (8), pp.1425-1433 (1996).
3.Zhou, S. W., F. D. Xu, S. M. Li, R. X. Song, S. Qi, Y. Zhang, and Y. P. Bao, “Major Origin of Mutagneicity of Chlorinated Drinking Water in China: Humic Acid or Pollutants,” The Science of the Total Environment, 196, pp.191-196 (1997).
4.Singer, P. C., “Humic Substances as Precursors for Potentially Harmful Disinfection By-Products,” Water Science and Technology, 40(9), pp.25-30 (1999).
5.Lee, J. F., M. P. Liao, H. D. Tseng, and T. P. Wen, “Behavior of Organic Polymers in Drinking Water Purification,” Journal of Chemosphere, 37(6), pp.1045-1061 (1998).
6.彭紀綸,「不同表面特性黏土於淨水程序中對高分子凝聚劑氯化反應影響之研究」,碩士論文,中央大學環境工程研究所,中壢(1999)。
7.林百顯,「不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
8.Biber, M. V., F. O. Gulacar, and J. Buffle, “Seasonal Variations in Principal Groups of Organic Matter in a Eutrophic Lake Using Pyrolysis /GC/MS,” Environment Science and Technology, 30(12), pp.3501-3607 (1996).
9.Amy, G. L., P. A. Chadik, and Z. K. Chowdhury, “Developinf Models for Predicting Trihalomethane Formation Potential and Kinetics,” J. AWWA, 79(7), pp.89-97 (1987).
10.Jansen, S. A., M. Malaty, S. Nwabara, E. Johenson, E. Ghabbour, G. Davies and J. M. Varnum, “Structural Modeling in Humic acid,” Materials Science and Engineering C4, pp.175-179 (1996).
11.Scheck, C. K. and F. H. Frimmel, “Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation/Hydrogen Peroxide /Oxygen,” Wat. Res., 29(10), pp. 2346-2352 (1995).
12.HDR Engineering Inc., Handbook of Public Water Syserms, 2nd ED, John Wiley & Sons, United States of America, pp. 78 (2001).
13.Bohn et al., Soil Chemistry : 142, Wiley , New York, 1985.
14.Stevenson, F. J., Human Chemistry Genesis, Composition, Reactions, Wiley, J and Sons, Inc, pp. 337-354 (1982).
15.Reckhow, D. A., P. C. Singer., R. L. Malcolm, “Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations,” Environment Science and Technology, 24(11), pp.1655-1664 (1990).
16.Wu, W. W., P. A. Chadik, W. M. Davis, J. J. Delfino and D. H. Powell, “The Effect of Structural Characteristics of Humic Substances on Disinfection By-Product Formation in Chlorination,” Natural Organic Matter and Disinfection By-Products, New York, pp.109-121 (2000).
17.Cook, R. L., and C. H. Langford, “Structural Characterization of a Fulvic Acid and a Humic Acid Using Solid-State Ramp-CP-MAS 13C Nuclear Magnetic Resonance,” Environment Science and Technology, 32(5), pp.719-725 (1998).
18.Christman, R. F., D. L. Norwood, D. S. Millington, J. D. Johnson, “Identity and Yields of Major Halogenated Products of Aquatic Fulvic Acid Chlorination,” Environment Science and Technology, 17(10), pp.625-631 (1983).
19.李敏華譯著,水質化學,復漢出版社印行,第401-406頁,1992。
20.Li, C. W., M. M. Benjamin, G. V. Korshin, “Use of UV Spectroscopy to Characterize the reaction Between NOM and Free Chlorine,” Environment Science and Technology, 34(12), pp.2570-2575 (2000).
21.Peters, R. H., W. B. Leer, F. M. Versteegh, “Identification of Halogenated Compounds Produced By Chlorination of Humic Acid in the Presence of Bromide,” Journal of Chromatography A, 686, pp.253-261 (1994).
22.飲用水中有機物(含揮發性有機物)管制項目及管制標準之合理性分析,行政院環境保護署,民國八十四年。
23.Jacangelo, J. G., J. Demarco, D. M. Owen, and S. J. Randtke,
”Selected Process for Removing NOM: An Overview,” J. AWWA, 87(1), pp.64 (1995).
24.De Nevers N., Air Pollution Control Engineering, Mc Graw-Hill, Singapore, (1995).
25.Bellar T. A. and J. J. Lichtenberg, “The Occurrence of Organohalides in Chlorinated Drinking Waters,” J. AWWA, pp. 703-706 (1974).
26.United States. Occupational Safety and Health Adminstration, “OSHA Regulate Hazardous Substances : Health, Toxicity, Economic and Technological Data / Occupational Safety and Health Administration,” U. S. Dept. of Labor.
27.簫鶴軒、李茂榮,「吹氣捕捉萃取技術」,科儀新知,第22卷,第三期,第83-91頁 (1990)。
28.鍾裕仁、李永清、章啟鵬、魏燕君, 「水體中揮發性有機物質 (VOC)的分析與應用」,中興工程顧問社,1997。
29.陸志德,「高科技產業相關水體中揮發性有機物分析之研究」,碩士論文,清華大學原子科學研究所,新竹(2000)。
30.Christman R. F., D. L. Norwood, D. S. Milligton, J. D. Jonhson, and A. A. Stevens, “Identity and Yields of Major Halogenated Products of Aquatic Fulvic acid Chlorotion.” Environ. Sci. Technol., 17, pp.625-628 (1983).
31.Peters R. J. B., C. Erkelens, E. W. B. De Leer, and L. De Galan, “The Analysis of Halogenated Acetic Acids in Dutch Drinking Water,” Water Research, 25, pp.473-477 (1991).
32.Smith et al., “Development Toxicity of Dichloroacetate in the Rat,” Teratology, 46, (1996)
33.Buytenhuys F. A., “Ion Chromatography of Inorganic and Organic Ionic Species Using Refractive Index Detection,” J. Chromatogr., 218, pp.57-64 (1981).
34.Yuefeng X., J. Z. Haojiang, and P. R. Joseph, “Development of a Capillary Electrophoresis Method for Haloacetic Acid,” Natural Organic Matter and Disinfection By-Products, pp.139-153 (2000).
35.Voudrias, E. A. and M. Reinhard, “Abiotic Organic Reactions at Mineral Surfaces,” Amer. Chem. Soc. Sympos. Ser, 323, pp.462-486 (1986).
36.Pickering, W. F., “Heterogeneous Oxidation Reactions,” Rev. Pure Appl. Chem, 16, pp.185-208 (1966).
37.Hawthorne, D. G. and D. H. Solomon , “Catalytic Activity of Sodium Kaolinites,” Clays. Clay Minerals, 20, pp.75-78 (1972).
38.Solomon, D. H. and H. H. Murray, “Acid-Base Interactions and the Properties of Kaolinite in Non-aqueous Media,” Clays. Clay Minerals, 20, pp.135-141 (1972).
39.Bailey, G. W. and S. W Karickhoff, “An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content,” Clays. Clay Minerals, 21, pp.471-478 (1973).
40.Frenkel, M., “Surface Acidity of Montmorillonite,” Clays. Clay Minerals, 22, pp.435-442 (1974).
41.Helsen, J. A.; R. Drieskens, and J.Chaussidon, “Position of Exchangeable Cations in Montmorillonite,” Clays. Clay Minerals, 23, pp.334-335 (1975).
42.Hasegawa, H., “Spectroscopic Studies on the Color Reaction of Acid Clay with Amines,” J. Phys. Chem., 66, pp.834-835 (1962).
43.Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-287 (1973).
44.Thompson, T. D. and W. F. Moll, “Oxidative Power of Smectites Measured by Hydroqunone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
45.Lahav, N. and D. M. Anderson, “Montmorillonite-benzidine Reactions in the Frozen and Dry States,” Clays. Clay Minerals, 21, pp.137 (1973).
46.Besson, G.; H. Estrade,; L. Gatineau,; C. Tchoubar, and J. Mering, “A kinetic Survey of The Cation Exchange and The Oxidation of A Vermiculite,” Clays. Clay Minerals, 23, pp.318-322 (1975).
47.Uytterhoeven, J., “Organic Derivatives of Silicates and Aluminosilicates,” Silicates Inds., 25, pp.403-409 (1960).
48.Uytterhoeven, J., “Determination of the Surface Hydroxyl Groups of Kaolinite by Organometallic Compounds (CH3MgI and CH3Li),” Bull. Groupe Franc. Argiles., 13, pp.69-76 (1962).
49.Solomon, D. H., “Clay Mineral as Electron Acceptors and/or Electron Donors in Organic Reactions,” Clays. Clay Minerals, 16, pp.31-39 (1968).
50.Yariv, S. and H. Cross, “Geochemistry of Colloid System,” Springer Verlag:Berlin (1979).
51.Mortland, M. M. and K. V. Raman, “Surface Acidity of Smectites in Relation to Hydration, Exchangeable Cation, and Structure,” Clays. Clay Minerals, 16, pp.393-398 (1968).
52.Mortland, M. M., “Proceedings of the International Clay Conference,” Wilmette, Illinois (1975).
53.Soma, Y. and M. Soma, “Raman Spectroscopic Evidence of Fromation of p-Dimethoxybenzene Cation on Cu-Montmorillonites,” Chem. Phys. Letters, 94, pp.475-478 (1983).
54.Soma, Y. and M. Soma, “Reaction of Aromatic Molecules in the Interlayer of Transition-Metal Ion-Exchanged Montmorillonite Studied by Resonance Raman Spectroscopy. 2. Monosubstituted Benzene and 4,4’-Disubstituted Biphenyls,” J. Phys. Chem., 89, pp.738-742 (1985).
55.Frenkel, M. and L. Heller-Kallai, “Interlayer Cations as Reaction Directors in the Transformation of Limonene on Montmorillonite,” Clays. Clay Minerals, 31, pp.92-96 (1983).
56.Solomon, D. H., B. C. Loft, and J. D. Swift, “Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals,” Clay Miner., 7, pp.289-398 (1968).
57.Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-288 (1973).
58.Isaacson, P. J. and B. L. Sawhney, “Sorption and Transformaiton of Phenols on Clay Surface:Effect of Exchangeable Cations,” Clay Minerals, 18, pp.253-265 (1983).
59.Sawhney, B. L., “Vapor-Phase Sorption and Polymerization of Phenols by Semectite in Air Nitrogen,” Clays. Clay Minerals, 33, pp.123-127 (1985).
60.Shindo, H. and P. M. Huang, “Catalytic Polymerization of Hydroquinone by Primary Minerals,” Soil Science, 139, pp.505-511 (1985).
61.Wang, Thomas S. C., L. S. Wu and F.Y. Lang, “Catalytic Polymerization of Phenoilic Compoinds by Primary Minerals,” Soil Science, 126, pp.15-21 (1978).
62.Philp. R. P., J. R. Maxwell, and G. Eglinton, “Environmental Geochemistry of Aquatic Sediments,” Sci. Progr. (Oxf.), 63, pp.521-545 (1976).
63.Sieskind, O. and P. Albrecht, “Efficient Synthesis of Rearranged Cholest-13(17)-enes Catalysed by Montmorillonite Clay,” Tetrahedron Lett., 26, pp.2135-2136 (1985).
64.Mingerlgrin, U. and S. Salzman, “Surface Reactions of Parathion on Clays,” Clays. Clay Minerals, 27, pp.72-78 (1979).
65.March, J., “Advanced Organic Chemistry, Reactions, Mechanisms, and Structure,” 3rd. Ed. ; John Wiley & Sons : New York (1985).
66.El-Amamy, M. M. and T. Mill, “Hydrolysis Kinetics of Organic-Chemicals on Montmorillonite and Kaolinite Surfaces As Related to Moisture-Content,” Clays. Clay Minerals, 32, pp.67-73 (1984).
67.Saltzman, S., U. Mingelgrin, and B. Yaron, “Role of Water Hydrolysis on Parathion and Methylparathion on Kaolinite,” J. Agric. Food Chem., 24, pp.739-743 (1976).
68.Solomon, D. H. and G. H. Hawthorne, “Chemistry of Pigmers and Fillers,” John Wiley & Sons : New York (1983).
69.Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Aromatic Hydrogen-Exchange Reactions,” Geoshim. Cosmochim. Acta., 46, pp.219-222 (1982).
70.Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Alkyl Hydrogen-Exchange Reactions - Reaction-Mechanisms,” Org. Gesmochim., 6, pp.755-760 (1984).
71.Thmopson, T. D. and W. F. Moll, “ Oxidative Power of Semctites Measured by Hydroquinone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
72.Soma, Y., M. Soma, and I. Harada, “The Oxidative Polymerization of Aromatic Molecules in the Interlayer of Montmorillonites Studuied by Resonance Raman Spectroscopy,” J. Contaminant Hydrology, 1, pp.95-106 (1986).
73.Sawhney, B. L., R. K. Kozloski, P. J. Isaacson, and M. P. N. Gent, “Polymerization of 2,6-Dimethylphnol on Smectite Surfaces,” Clays. Clay Minerals, 32 (2), pp.108-114 (1984).
74.Lee, G. F., “Kinetics of Reactions Between Chlorine and Phenolic Compounds,” principles and applications of water chemistry, S. D. Faust and J. V. Hunted, eds., John Wiley, New York (1967).
75鄭世雄、魏百祿與陳克紹譯著,有機化學,藝軒圖書出版社印行,第三版,第577-625頁,台北(1997)。
76.Page, A. L., R. H. Miller, and D. R. Keeney, “Method of Soil Analysis,” Part2-Chemical and Microbiological Properties (2nd Edn), pp.574 (1982).
77.Solomon, D. H., B. C. Loft, and J. D. Swift, “Reactions Catalyzed by Minerals. V. The Reaction of Leuco Dyes and Unsaturated Organic Compounds with Clay Minerals,” Clay Minerals, 7, pp.399-408 (1968).
78.Thomas, S. C., S. W. L. Wang, and L. F. Yue, “Catalytic Polymerization of Phenolic Compounds by Clay Minerals,” Soil Science, 126(1), pp.15-21 (1978).
79.Geo. Clifford White, “The Handbook of Chlorination,” Second Edition, Van Nostrand Reinhold Company, pp.311-314 (1986).
80.Delaude, L. and P. Laszlo, “Versatility of Zeolites As Catalysts for Ring or Side-Chain Aromatic Chlorinations by Sulfuryl Chloride,” J. Org. Chem., 55, pp.5260-5269 (1990).
81.Morris, R. D., “Chlorination, Chlorination By-products, and Cancer: A Meta-Analysis,” American Joural of Public Health, 82(7), pp.955-963 (1992).
82.廖寶玫,「淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究」,博士論文,中央大學環境工程研究所,中壢(2000)。
83.Pomes, M. L., W. R. Green, E. M. Thurman, H. O. William, E. L. Harry, “DBP Formation Potential of Aquatic Humic Substance,” Jour. AWWA, 91(3), pp.103-115 (1999).
84.Johnson, J. D., and J. N. Jensen, “The THM and TOX Fromation Routes, Rates, and Precursors,” J. AWWA, 78(4), pp.156-162 (1986).
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2002-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明