博碩士論文 89326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.204.173.45
姓名 許添順(Tien-Shun Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 化學置換程序回收氯化銅蝕刻廢液之研究
(Recovery of Wasted Etching Liquid Containing Copper Chloride by Cementation processes)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以化學置換程序(cementation process)回收氯化銅蝕刻廢液,除可回收金屬銅之外,反應後之回收液,亦可進一步製成混凝劑。本研究依據實際氯化銅廢液之性質,自行配置含銅離子(Cu2+)與自由酸(HCl)之人工廢液,並以金屬鐵或鋁為犧牲金屬,進行批次實驗,再以操作反應溫度、銅回收率和反應時間、銅粉純度及回收液品質為評估指標,建立合適之操作方式,最後驗證於實廠廢液。
研究結果顯示,以鐵為犧牲金屬之置換反應,在一次添加足量鐵金屬時,初始銅離子與自由酸濃度越高,回收速率越快,但會造成反應溫度過高(75℃),影響操作上的安全性,尤以初始銅離子與自由酸濃度分別大於75g/l時,最為顯著。自由酸濃度及犧牲金屬劑量的增加,有助於提升置換反應速率、銅回收率及回收液之氯化亞鐵含量,此外,自由酸濃度愈高時,氫離子可消耗置換反應後殘留的鐵金屬,提高銅粉純度,但鐵劑量越高,則會降低銅粉純度。以分批添加鐵的方式,可減少鐵金屬與自由酸的反應,但相對的亦降低了整體的置換反應速率,所以當以鐵為犧牲金屬時,建議仍以一次添加鐵的方式為優先考慮,而分批添加鐵的方式,僅適用在高濃度銅離子與高自由酸(>75g/l)之廢液。
以鋁為犧牲金屬之置換反應,由於鋁金屬與銅之氧化還原電位高,置換反應性佳,一次添加足量鋁金屬,操作上易發生反應溫度劇升的危險,因此,若要使銅離子完全置換,勢必將足量鋁金屬採取分批添加的方式。此外,若是系統同時存在銅離子、氯離子及銅金屬,且在反應溫度過低時(<65℃),由XRD分析結果發現,會產生氯化亞銅結晶物,造成銅粉含氯量過高,降低銅粉品質。而本研究中,初始銅離子濃度介於35~75g/l之間,以分批添加鋁金屬方式,至總添加量達初始銅離子莫耳比1.2時,經75分鐘反應時間,可達到99%以上銅回收率。
摘要(英) Cementation process is a promising technology for recovery of metal copper from wasted etching liquid containing copper chloride. Also, after solid/liquid separation, the supernatant can be recovered and reused as coagulant. In this study, synthesis wasted liquids containing various concentration of copper ion and free acid (HCl) were prepared in order to simulate the real characteristics of wasted etching liquid. Also, batch tests of cementation were studied by using metal iron or aluminum as the sacrificed metal. Several indicators of performance, such as reaction temperature, copper recovery rate and reaction time, purity of copper powder, and quality of the recovered supernatant, were evaluated. The proper operation mode of cementation was established and applied to the real wasted etching liquid for verification.
Experimental results showed that once adding enough dosage of sacrificed metal iron, the copper recovery rate increased with the increase of initial concentration of copper and free acid. However, this also resulted in raising temperature up to greater than 75℃ and affecting the safety of operation, especially, in the case of copper ion and free acid concentrations were both greater than 75 g/l. Nevertheless, increasing the concentration of free acid and the amount of the sacrificed metal iron could enhance the reaction rate of cementation, the recovery rate of copper and the content of ferrous chloride in supernatant. In addition, the more free acid the more hydrogen ion would consume the residue metal iron and then could obtain higher purity of copper powder. On the contrary, increasing the dosages of metal iron would decrease the purity of copper powder. Although, adding metal iron in a mode of sequencing replenishment could reduce the reaction between iron and free acid, the reaction rate of cementation would decrease at the same time. Therefore, it was suggested that adding enough iron at once was priority choice unless the concentration of copper ion and free acid were both too high (>75 g/l).
Regarding the system with aluminum as sacrificed metal, due to higher oxidation-reduction potential and vigorous reaction, the temperature was sharply increased when enough aluminum was added once. In order to avoid the danger of operation, sequencing replenishment of metal aluminum until the end of reaction is preferable. In addition, if the reaction temperature was below 65℃ as well as the coexistence of copper ion, chloride ion and metal copper, the results of XRD analysis revealed that crystal of cuprous chloride was found within the copper powder, consequently, too much chloride would resulted in lowering the purity of the recovered copper. Actually, this study found that copper recovery could be greater than 99% in 75 minutes of reaction time as the initial copper ion concentration (Cu0) was in the range of 35~75g/l and the replenishment of aluminum reached the Al/Cu0 molar ratio was 1.2.
Based on the results of the study for synthesis wasted liquids. Further applying the suggestion of operating mode to the real wasted etching liquid, it found that 100% of copper recovery rate, 89% of copper purity, and 25% of ferrous chloride were obtained in 25 minutes of reaction time when using iron as sacrificed metal. On the other hand, it also attained 100% of copper recovery rate and 99% of copper purity in 75 minutes when using aluminum as sacrificed metal for cementation.
關鍵字(中) ★ 化學置換程序
★ 氯化銅
★ 蝕刻廢液
★ 犧牲金屬
★ 鐵
★ 鋁
關鍵字(英) ★ cementation processes
★ copper chloride
★ etching waste solutions
★ sacrificial metal
★ iron
★ aluminum
論文目次 目 錄
目錄 Ⅰ
圖目錄 Ⅳ
表目錄 Ⅷ
第一章 前言 ………………………………………………………… 1
1-1研究緣起 …………………………………………………… 1
1-2研究目的及內容……………………………………………... 2
第二章 文獻回顧……………………………………….……………. 4
2-1印刷電路板(PCB)業蝕刻廢液水質特性…………………... 4
2-1-1 印刷電路板製造方法與製程概述………………….. 4
2-1-2 印刷電路板蝕刻廢液水質特性…………………….. 6
2-2重金屬蝕刻廢液回收技術……………………….………….. 10
2-3化學置換程序應用於氯化銅蝕刻廢液發展現況..………… 15
2-3-1 化學置換程序應用於含銅溶液之文獻回顧……….. 15
2-3-2 國內實廠化學置換應用程序……………………….. 17
2-4化學置換法理論基礎…..………………………….……….... 22
2-4-1 固液相之氧化還原反應…………………………….. 22
2-4-2 化學置換法之反應機制…………………………….. 25
2-5影響化學置換反應之因子………………………….……….. 28
2-5-1 pH效應………………………………………………. 28
2-5-2 初始濃度效應……………………………………….. 32
2-5-3 不同犧牲金屬添加量及種類……………………….. 34
2-5-4 溫度效應…………………………………………….. 34
2-5-5 攪拌效應…………………………………………….. 36
第三章 實驗設計、材料與方法……………………………………. 37
3-1研究流程…………………………………….………………. 37
3-2實驗裝置及實驗設計與操作方法………………………… 40
3-2-1 實驗裝置…………………………………………….. 40
3-2-2 實驗設計…………………………………………….. 42
3-2-3 操作方法…………………………………………….. 48
3-3實驗設備、材料及藥品………………………………………. 49
3-3-1 實驗設備…………………………………………….. 49
3-3-2 實驗材料及藥品…………………………………….. 51
3-4實驗分析項目與方法………………………………………... 52
3-5評估指標………………….…………….………………….… 54
第四章 結果與討論……………….…………………………………. 57
4-1鐵為犧牲金屬之置換反應………………………………….. 57
4-1-1不同初始銅離子與自由酸濃度之化學置換反應特性 57
4-1-2 自由酸濃度的影響………………………………….. 62
4-1-3 犧牲金屬劑量的影響……………………………….. 66
4-1-4 攪拌速度及初始溫度效應………………………….. 70
4-1-5 不同添加方式之分析……………………………….. 74
4-1-6 綜合評估…………………………………………….. 76
4-2鋁為犧牲金屬之置換反應………………………………….. 80
4-2-1 鋁為犧牲金屬之化學置換反應特性……………….. 80
4-2-2 決定分批添加方式之前置實驗…………………….. 83
4-2-3 分批添加方式之分析……………………………….. 94
4-2-4 SEM微觀觀察……………………………………….. 99
4-2-5 綜合評估…………………………………………….. 101
4-3沈積物之分析………………………………………………. 103
4-3-1 鐵為犧牲金屬之沈積物結晶方式………………….. 103
4-3-2 鋁為犧牲金屬之氯化亞銅沈積物分析…………….. 105
4-3-3 處理方式對沈積物結晶型態之影響……………….. 113
4-4回收實廠氯化銅蝕刻廢液之結果與討論………………….. 116
4-4-1 鐵為犧牲金屬……………………………………….. 116
4-4-2 鋁為犧牲金屬……………………………………….. 119
4-4-3 質量平衡…………………………………………….. 121
4-4-4 綜合評估…………………………………………….. 123
第五章 結論與建議…………………………………………………... 128
5-1結論………………………………………………………….. 128
5-2建議………………………………………………………….. 130
參考文獻 …………………………………………………………….. 132
附錄A 置換反應過程及資源化產品之照片…………..…...…..….附A-1
附錄B 實驗原始數據…………………………………….……..….附B-1
參考文獻 參考文獻
Agelidis, T., K. Fytianos, G. Vasilikiotis, and D. Jannakoudakis, “Lead Removal from Wastewaters by Cementation Using a Fixed Bed of Iron Sphere,” Environmental Pollution, Vol.50, No.3, pp.243(1988).
Anacleto, A. L. and J. R. Carvaiho, “Mercury Cementation from Chloride Solutions Using Iron, Zinc and Aluminium,” Minerals Engineering, Vol.9, No.4, pp.385-379(1996).
Chen, H. J. and C. P. Lee, “Effects of the Type of Chelating Agent and Deposit Morphology on the Kinetics of the Copper-Aluminum Cementation System,” Langmuir, Vol.10, No.10, pp.3880-3886(1994).
Das, S. C. and P. Gopala Krishna, “Effects of Fe(Ⅲ) during Copper Electrowinning at Higher Current Density,” International Journal of Mineral Processing, Vol.46,No.1~2, pp.91-105(1996).
Denahui, F. B., R. M. Hooper, and A. A. Wragg, “Cementation of Copper on Packed-Beds of Iron Particles - Some Mass-Transfer and Morphological Aspects,” Chemistry & Industry, No.17, pp.571-574 (1986).
Djokic, S. S., “Cementation of Copper on Aluminum in Alkaline-Solutions, ” Journal of the Electrochemical Society, Vol.143, No.4, pp.1300-1305(1996).
Donmez, B., F. Sevim, and H. Sarac, “A Kinetic Study of the Cementation of Copper from Sulphate Solutions onto a Rotating Aluminum Disc,” Hydrometallurgy, Vol.53, No.4, pp.145-154(1999).
Dreher, T. M., A. Nelson, G. P. Demopoulos, and D. Filippou, “The Kinetics of Cobalt Removal by Cementation from an Industrial Zinc Electrolyte in the Presence of Cu, Cd, Pb, Sb and Sn Additive,” Hydrometallurgy, Vol.60,No.2, pp.105-116(2001).
Hsu, Y. J., M. J. Kim, and T. Tran, “Electrochemical Study on Copper Cementation from Cyanide Liquors Using Zinc,” Electrochimica Acta, Vol.44, No.10, pp.1617-1625(1999).
Hsu, Y. J. and T. Tran, “Selective Removal of Gold Copper-Gold Cyanide Liquors by Cementation Using Zinc,” Minerals Engineering, Vol.9, No.1, pp.1-13(1996).
Karavasteva, M., “The Effect of Certain Surfactants on the Cementation of Copper by Suspended Zinc Particles,” Hydrometallurgy, Vol. 43, No.1-3, pp.379-385(1996).
Ku, Y. and C. H. Chen, “Removal of Chelated Copper from Waste-waters by Iron Cementation,” Ind. & Engr. Chem. Res.,Vol.31, No.4, pp.1111-1115(1992).
Ku, Y. and C. H. Chen, “Kinetic-Study of Copper Deposition on Iron by Cementation Reaction,” Separation Science and Technology, Vol.27, No.10, pp.1259-1275(1992).
Lai, Y. C., W. Y. Wei, Y. H. Ju, and C. P. Lee, “Kinetics of the Chelated Copper Cementation on Aluminum Particles in Rotary Drum Reaction,” Journal of the Chinese Institute of Environment, Vol.27, No.2, pp.101-106(1996).
Lu, G., J. Qu, and H. Tang, “The Electrochemical Production of Highly Effective Polyaluminum Chloride,” Water Research, Vol.33, No3, pp.807-813(1999).
Mackinnon, D. J. and T. R. Ingraham, “Copper Cementation on Aluminum Canning Sheet,” Candian Metallungical Quarterly, Vol. 10, No 3, pp.197~203(2000).
Mahmoud, A. Z., “Effect of Surface-Active Substances on the Rate of Production of Copper-Powder from Copper-Sulfate Solutions by Cementation on Zinc Rods in Gas Sparged Reactors,” Hydrometallurgy, Vol. 41, No 2-3, pp.231-242(1996).
Makhloufi, L., S. Bourouina, and S. Haddad, “Copper Cementation of Silver in Concentrated Chloride Solutions,” Electrochimica Acta, Vol.137, No10, pp.1779-1786(1992).
Makhloufi, L., B. Saidani, and H. Hammache, “Removal of Lead Ions From Acidic Aqueous Solutions by Cementation on Iron,” Water Research, Vol. 34, No 9, pp.2517-2524(2000).
Masse, N. and D. L. Piron, “Effects of Temperature and Powder Morphologies on the Cementation Rate of Copper in Alkaline Zinc Solution,” Journal of the Electrochemical Society, Vol.141, No.3, pp.664-669(1994).
Nosier, S. A. and S. A. Sallam, “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder,” Separation and Purification Technology, Vol. 18, No 2, pp.93-101(2000).
Nguyen, H. H., T. Tran, and P. L. M. Wong, “A Kinetic Study of the Cementation of Gold from Cyanide Solutions onto Copper,” Hydrometallurgy, Vol.46, No1-2, pp.55-69(1997).
Panda, B. and S. C. M. Das, “Electrowinning of Copper from Sulfate Electrolyte in Presence of Sulfurous Acid,” Hydrometallurgy, Vol.59, pp.55-67(2001).
Patterson, J. W. and W. A. Jancuk, “Cementation Treatment of Copper in Wastewater,” Proc. Ind. Waste Conf., Vol.32, pp853~865(1977).
Polcaro, A. M., S. Palmas, and S. Dernini, “Kinetics of Cobalt Cementation on Zinc Powder,” Ind. Eng. Chem. Res., Vol. 34,No. 9, pp.3090-3095(1995).
Puvvada, G. and T. Tran, “The Cementation of Ag(I) Ions from Sodium-Chloride Solutions Onto a Rotating Copper Disc,” Hydrometallurgy, Vol. 37, No. 2, pp.193-206(1995).
Shen, Y. H. and B. A. Dempsey, “Synthesis and Speciation of Polyaluminum Chloride for Water Treatment,” Environment Intemation, Vol. 24, No.8, pp.899-910(1998).
Stefanowicz, T., M. Osinska, and S. Napieralskazagozda, “Copper Recovery by Cementation Method,” Hydrometallurgy, Vol. 47, No.1, pp.69-90(1997).
Vanderpas, V. and D. B. Dreisinger, “A Fundamental-Study of Cobalt Cementation by Zinc Dust in the Presence of Copper and Antimony Additives,” Hydrometallurgy, Vol.43, No.1-3, pp.187-205(1996).
Wei, W. Y., C. Lee, and H. J. Chen, “Modeling and Analysis of the Cementation Process on a Rotating-Disk,” Langmuir, Vol.10, No.6, pp.1980-1986 (1994).
林介文,「印刷電路板蝕刻液研究」,碩士論文,清華大學化學工程學系,新竹(1999)。
申永順、陳建華、林煌順,「以管柱式化學置換處理重金屬離子水溶液反應行為之研究」,第二十五屆廢水處理技術研討會論文集,高雄,第690-694頁(2000)。
李嘉菘、顧洋,「陰離子對鐵金屬置換廢水中銅離子反應之影響」,第十七屆廢水處理技術研討會論文集,中壢,第673-688頁(1992)。
吳明晃,「以化學置換程序處理水溶液中含鎘、汞離子之研究」,碩士論文,台灣科技大學化學工程系,台北(2000)。
周珊珊、廖啟鐘、彭淑惠,「重金屬廢液回收處理技術」,工業污染防治,第二十卷,第四期,第166~186頁,民國90年。
曾立鑫,「印刷電路板非氨系蝕刻液之研究」,碩士論文,清華大學化學工程學系,新竹(1998)。
楊漢明、黃國瑞、李勝男、柯貴城,「鋁金屬處理高濃度含銅廢液之探討」,第十九屆廢水處理技術研討會論文集,台南,第761-799頁(1994)。
經濟部工業局,「印刷電路板業環保工安整合性技術手冊」,民國八十九年九月。
顧洋、吳明晃、申永順,「以管柱式化學置換處理含鎘離子水溶液反應行為之研究」,第二十五屆廢水處理技術研討會論文集,高雄,第695-701頁(2000)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明