博碩士論文 89326020 詳細資訊


姓名 康美祝(Mei-Chu Kuang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 MBR除氮系統特性之研究
(The characteristic of MBR system in removal nitrogen)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以薄膜生物程序(Membrane Bioreactor,MBR)為主探討其對COD、氮、磷之處理效能。MBR程序乃是結合傳統之活性污泥法與薄膜處理程序而形成,首先在傳統活性污泥處理法之好氧槽中,置入薄膜裝置,控制污泥停留時間(SRT)為10天、pH值在6.8~7.1、DO>5mg/L下,探討水力停留時間(HRT)分別為5、10、15、20小時下,對於COD、氮及磷之處理效果。由實驗結果發現,COD之去除率在94%以上,氨氮的去除率更高達100%,而磷的去除並沒有明顯的效果,而以HRT為15小時時,氮的去除效果最佳。
另於好氧槽前增置一個缺氧槽,控制HRT為15小時,其餘操作條件均相同下,探討不同的硝化液迴流比分別為0.5、1.5及2.5下,對於COD、氮及磷之處理效果,並探討其在不同迴流比下,其脫硝及硝化之情形。由實驗結果可知,在不同的硝化液迴流比下,MBR系統對於COD之去除率在95%以上,氨氮的去除效率高達99%以上,而對於磷的去除只有達25%,並無明顯的效果,出流水中的SS均介於2-5mg/l之間,可看出水質分離固體物之效率相當好。而於好氧槽前加入一缺氧槽後,對於硝酸鹽的去除率可看出有略微增加,其中以硝化液迴流比為1.5時除氮效果最好。
利用前面實驗所得之結果,將兩段式MBR程序控制於HRT=15小時、硝化液迴流比為1.5,而其餘控制條件均相同之情形下,探討不同之SRT分別為10天、20天及30天下,對於COD、氮、磷之處理效果,並進一步對各SRT進行活性污泥之菌相分析。結果發現兩段式MBR程序在不同SRT下,其對於COD、氮及磷之處理效果能相當良好且穩定,其中以SRT=30天時去除總氮效果最好,可高達81%。而在菌相分布上,在不同SRT下皆有Proteobacteria及Planctomycetales兩種菌群出現,且均發現好氧脫硝菌之存在。
摘要(英) The Membrane bioreactor (MBR) is the combination of the activated sludge process and the membrane technique process. With the effective filtrating function of the membrane unit, the suspended solid (SS) in the effluent of an MBR can be reduced to a very low concentration, hence eliminating the requirement of a secondary clarifier. This combination could further simplify the complicated operation requirements of the traditional wastewater secondary treatment facilities and is beneficial to the economic aspects of a treatment process for its less land demand.
In this study, we first surveyed the impact of different hydraulic retention time (HRT) on an MBR. With a fixed sludge retention time (SRT=10 days), pH value (6.8~7.1), dissolved oxygen concentration (DO=5mg/L) and varied HRT (5, 10, 15, 20 hours), the MBR removed influent ammonia-nitrogen (NH4+-N) and chemical oxygen demand (COD) with high efficiency (100% and 94% respectively), and the best treatment efficiency was obtained with an HRT equaled to15 hours. However, the MBR didn’t display a function of phosphorus removal.
To further increase the nitrogen removing efficiency of the MBR system, an anoxic tank was added in the upper stream of the aerobic MBR, which formed a two-stage MBR. With varied reflux ratio of the aerobic tank effluent to the influent (0.5, 1.5 and 2.0 respectively), the two-stage MBR removed COD and NH4+-N significantly, but the removal of phosphorus was not largely increased (efficiency =25%). The best COD and NH4+-N removing efficiency was obtained with the reflux ratio of 1.5.
Utilizing the optimized HRT and reflux ratio, we further tested the two-stage MBR system with different sludge retention time (SRT=10, 20 and 30 days). Results showed that the two-stage MBR performed stably and the total nitrogen removal efficiency could reach 81% with a SRT of 30 days. Moreover, 16S rDNA analysis of the system showed that bacteria belonged to Proteobacteria and Planctomycetale groups existed in the microbial community of the two-stage MBR reactor. We also found aerobic denitrifier at varied SRT.
關鍵字(中) ★ MBR
★ 水力停留時間
★ 硝化液迴流比
★ 污泥停留時間
★ 好氧脫硝菌
關鍵字(英) ★ MBR
★ HRT
★ reflux ratio
★ SRT
★ aerobic denitrifier
論文目次 目錄…………………………………………………………………… Ⅰ
圖目錄………………………………………………………………… Ⅳ
表目錄………………………………………………………………… Ⅷ
第一章 前言………………………………………………………… 1
1.1 研究動機……………………………………………................... 1
1.2 研究目的……………………………………………................... 2
第二章 文獻回顧…………………………………………………… 3
2.1 生物處理法……………………………..……………………….. 3
2.1.1 生物處理法原理………………..…………………………. 3
2.1.2 生物硝化、脫硝原理……………………………………… 4
2.1.3 生物除磷原理………………………………………........... 9
2.1.4 生物處理法種類概述………………………………........... 11
2.1.5 生物處理程序中常見之微生物……………………........... 15
2.2 薄膜生物程序……………………………………………............ 15
2.2.1 薄膜種類……………………………………………........... 16
2.2.2 MBR種類…………………………………………………. 18
2.2.3 固液分離MBR形式……………………………………… 19
2.2.4 MBR與CAS之比較………………………………........... 21
2.3 沈浸式好氧MBR程序處理都市污水之利用…………………. 24
2.3.1 有機負荷與水力停留時間…………………………........... 26
2.3.2 氮、磷之去除………………………………………………. 26
2.3.3 微生物………………………………………………........... 27
2.3.4 薄膜孔徑與通量……………………………………........... 27
2.4 利用分子生物技術探討微生物菌群結構……………………… 28
2.4.1 分子生物學…………………………………………........... 28
2.4.2 總DNA之萃取…………………………………………… 30
2.4.3 聚合酵素連鎖反應…………………………………........... 31
2.4.4 分子轉殖…………………………………........................... 31
2.4.5 變性梯度明膠電泳…………………………………........... 32
第三章 實驗設備與方法…………………………………………….. 33
3.1 實驗設備與實驗計畫…………………………….……………... 33
3.1.1 實驗設備……………………….………………………….. 33
3.1.2 模型廠實驗計畫……………….………………………….. 36
3.2 實驗步驟…………………………………….……………........... 37
3.3 分析方法與設備………………………………………………… 38
3.3.1 水質分析方法………………………………………........... 38
3.3.2 菌相分析方法………………………………………........... 38
3.3.3 分析設備……………………………………………........... 43
第四章 結果與討論………………………………………………….. 44
4.1 控制不同HRT下MBR程序之處理特性………….………….. 45
4.1.1 單槽MBR程序對於碳、氮、磷之處理效果…………….. 45
4.1.2 單槽MBR處理結果比較…………………………………. 49
4.1.3 單槽MBR程序於HRT=20hr之菌相分析………………. 53
4.2 兩段式MBR程序不同硝化液迴流比之處理特性….…………. 54
4.2.1 MBR程序對於碳、氮、磷之處理效果…………………. 55
4.2.2 MBR程序於不同硝化液迴流比處理結果比較………….. 57
4.3 兩段式MBR程序控制不同SRT下之處理特性………………. 60
4.3.1 MBR程序對於碳、氮、磷之處理效果………………….. 60
4.3.2 MBR程序於不同SRT時各處理單元之水質分析………. 62
4.4 MBR程序於不同SRT時之菌相分析……………………………. 66
4.4.1 MBR程序在SRT=10天之菌相分析…………………….. 66
4.4.2 MBR程序在SRT=20天之菌相分析……………………. 72
4.4.3 MBR程序在SRT=30天之菌相分析……………………. 78
4.4.4 MBR程序在不同SRT之菌相綜合比較…………………. 83
第五章 結論與建議………………………………………………….. 86
5.1結論…………………………………………………………........... 86
5.2 建議……………………………………………………………….. 87
參考文獻……………………………………………………………… 89
圖 目 錄
圖2.1 傳統活性污泥法 3
圖2.2 氮處理程序中氮的轉換 4
圖2.3 磷蓄積菌厭氧/好氧代謝模式示意圖 10
圖2.4 厭氧/缺氧/好氧程序對於磷及氮去除模式示意圖 10
圖2.5 WUHRMAN除氮程序 11
圖2.6 MLE除氮程序 12
圖2.7 BARDENPHO除氮程序 12
圖2.8 相分離氧化渠脫氮處理程序 13
圖2.9 多段式旋轉圓盤處理設施斷面圖 13
圖2.10 PEGASUS除氮程序 14
圖2.11 生物膜之淨化圖(修正WILLIAM, 1989) 15
圖2.12 濾膜孔徑與污染物粒俓關係圖 18
圖2.13 (A)固液分離薄膜程序;(B)氧傳輸薄膜程序(MABR);(C)萃取薄膜程序(EMBR) 19
圖2.14 MBR程序之配置方式 20
圖2.15 薄膜生物程序圖 21
圖2.16 分子生物技術在環境微生物多樣性分析流程 30
圖3.1 MBR模廠示意圖 35
圖3.2 實驗流程圖 37
圖3.3 分子生物實驗流程圖 39
圖4.1 單槽MBR程序對於碳、氮、磷之去除效率 48
圖4.2 單槽MBR程序於不同HRT時好氧槽之MLSS及MLVSS 48
圖4.3 單槽MBR程序於不同HRT之出流水總菌落數 49
圖4.4 單槽MBR程序於各處理程序之COD濃度 50
圖4.5 單槽MBR程序於各處理程序之氨氮濃度 51
圖4.6 單槽MBR程序於各處理程序之TKN濃度 51
圖4.7 單槽MBR程序於各處理程序之總氮濃度 52
圖4.8 單槽MBR程序於各處理程序之總磷濃度 52
圖4.9 各處理階段COD之濃度變化 58
圖4.10 各處理階段TP之濃度變化 58
圖4.11 各處理階段氨氮之濃度變化 59
圖4.12 各處理階段NOX之濃度變化 59
圖4.13 不同SRT各處理階段COD之濃度變化 63
圖4.14 不同SRT各處理階段氨氮之濃度變化 63
圖4.15 不同SRT各處理階段TKN之濃度變化 64
圖4.16 不同SRT各處理階段NOX之濃度變化 64
圖4.17 不同SRT各處理階段TN之濃度變化 65
圖4.18 不同SRT各處理階段TP之濃度變化 65
圖4.19 SRT=10天之DGGE菌相分布圖 67
圖4.20 MBR程序在SRT=10天之菌相分布圖 68
圖4.21 以16RDNA為基礎對SRT=10天之污泥樣品製作之親緣樹 69
圖4.22 SRT=20天之DGGE菌相分布圖 73
圖4.23 MBR程序在SRT=20天之菌相分布圖 74
圖4.24 以16RDNA為基礎對SRT=20天之污泥樣品製作之親緣樹 75
圖4.25 SRT=30天之DGGE菌相分布圖 79
圖4.26 MBR程序在SRT=30天之菌相分布圖 79
圖4.27 MBR程序在SRT=30天之菌相分布圖 ................................81
圖4.28 各試程之菌種分布圖 84
表目錄
表2.1 生物處理脫氮作用機制…………………………………….. 7
表2.2 生物處理除磷之步驟……………………………………….. 10
表2.3 生物營養鹽處理程序中常見的微生物菌屬……………….. 16
表2.4 MBR與CAS處理廢水結果之比較………………………… 22
表2.5 MBR與CAS於不同SRT之Yield………………………….. 22
表.2.6 好氧MBR程序在處理都市廢水時的水力停留時間及有機負荷之特性…………………………………………………..
25
表2.7 沈浸式MBR程序常用之孔徑及通量………………………. 28
表3.1 人工合成污水之主要水質………………………………….. 34
表3.2 人工合成污水之主要水質………………………………….. 34
表3.3 MBR模廠各實驗室成之控制條件………………………… 36
表3.4 聚合酵素連鎖反應之引子………………………………….. 41
表4.1 各實驗試程之控制條件及討論章節……………………….. 44
表4.2 進流水質負荷及操作條件………………………………….. 46
表4.3 單一好氧槽MBR程序於不同HRT時之處理效果………. 46
表4.4 單槽MBR程序於HRT=20小時之優勢菌種…………….. 53
表4.5 MBR程序於不同硝化液迴流比時之處理效果……………. 56
表4.6 MBR於不同SRT時之處理效果…………………………….......... 61
表4.7 SRT=10之親緣樹內各菌株分類………………………….. 70
表4.8 SRT=20之親緣樹內各菌株分類………………………….. 76
表4.9 SRT=30之親緣樹內各菌株分類………………………….. 82
表4.10 各試程具有除氮弁鄐孝葴堣嬪G…………………………. 85
參考文獻 Amann R.I., Ludwig W. and Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59(1),143-169.
Blackall L.L, Burrell P.C., Gwilliam H., Bradford D., Bond P.L.and Hugenholtz P.(1998) The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Wat. Sci. Technol. 37(4-5),451-454
Brindle K. and Stephenson T. (1996). The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng.49,601-610.
Bond P. L., Hugenholtz P., Keller J., and Blackall L. L. (1995). Bacterial community structures of phosphate removing and non-phosphate removing activated sludge from sequencing batch reactors. Appl. Environ. Microbiol., 61(5), 1910-1916.
Burrell P. C., Keller J. and Blackall L. L. (1998). Microbiology of a Nitrite-Oxidizing Bioreactor. Applied and Environmental Microbiology, 64(5), 1878-1883.
Chuang S.H., Ouyang C.F., Yuang H.C. and You S.J. (1997) Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and bilfilm. Wat. Sci. Technol. 37(4-5), 593-597
Cicek N., Franco J.P., Suidan M.T., Urbain V. and Manem J. (1999). Characterization and Comparison of a Membrane Bioreactor and a Conventional Activated-Sludge System in the Treatment of Wastewater Containing High-Molecular-Weight Compounds. Wat. Environ. Res. 71,64-70.
Côté p., Buisson H. and Praderie M. (1998). Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Wat. Sci. Tech. Vol. 38, No. 4-5, 437-442.
Côté p. and Thompson D. Wastewater treatment using membrane : the north American experience. (1999). IWA Conf. Membrane Technology in Environmental Management, Tokyo, 46-53.
Crocetti R. G., Hugenholtz P., Bond P. L., Schuler A., Keller J. Jenkins D., and Blackall L. L. (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for heir detection and quantitation. Appl. Environ. Microbiol., 66(3), 1175-1182.
Fan X. J., Urbain V., Qian T. and Manem J. (1996). Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Wat. Sci. Technol.34(1-2), 129-136.
Ghyoot W., and Verstraete W. (2000). Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res., 34, 205-215.
Hesselmann R. P. X., Werlen C., Hahn D., van der Meer R. and Zehnder A. J. B. (1999). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhnaced biological phosphate removal in activated sludge. Syst. Appl. Microbiol., 22, 454-465.
Holt G. J., Krieg R. N., Sneath H. P., Staley T. J., and Williams T. S. (1994). Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins, Maryland.
Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C. and Gillis M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum. and Rhizobium tianshanense to Mesorhizobium gen. nov. International Journal Systematic Bacteriology., 47, 895-898.
Jenkins D.(1992) Handout for the workshop of operation and control in activated sludge systems. Graduate Institute of Environment Engineering, National Central University.
Juretschko S., Loy A., Lehner A. and Wagner M. (2002). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol., 25, 84-99.
Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H. J., Osborn A. M. and Stolz A. (1999). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov.. International Journal of Systematic Bacteriology, 49, 887-897.
Livingston, A. G. (1994). Extractive membrane bioreactor: A new process technology for detoxifying chemical industry watewaters. J. Chem. Technol. Biotechnol. 60, 117-124.
Luxmy B. S., Nakajima F. and Yamamoto K. (1999). Analysis of bacterial community in membrane separation bioreactors by fluorescent in situ hybridization and denaturing gradient gel electrophoresis techniques. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 302-309.
Madigan T. M., Martinko J. M. and Parker J. (2000). Brock biology of microorganisms 9th : Prokaryotic diversuty : bacteria . Sourthern Illinois University Carbondale, Prentice Hall Tnternational, Inc., 453-544.
Manz W., Wagner M., Amann R. and Schleifer K.H. (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants., Water Res.28 (8) ,1715-1723.
Mitsui H., Gorlach K., Lee H.J., Hattori R. and Hattori T. (1997). Incubation time and media requirement of culturable bacteria from different phylogenetic group. J. of Microbial Methods, 30(2), 103-110.
Müller E.B., Stouthamber A. H., Versevsld H. W. and Eikelboom D. H. (1995). Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration. Wat. Res. 29, 1179-1189.
Murakami T., Usui J., Takamura K. and Yushikawa T. (1999). Application of immersed type membrane separation Proc. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 256-262.
Nandasena K. G., O’Hara G. W., Tiwari R. P.,Yates R. J. and Howieson J. G. (2001). Phylogenetic relationships of three bacterial strains isolated from the pasture legume Biserrula pelecinus L.. International Journal of Systematic and Evolutionary Microbiology. 51, 1983-1986.
Painter H. (1970) A Review of Literature on Inorganic Nitrogen Metabolism in Micro-Organisms, Wat. Res., 4(6): 393.
Rosenburger, S., Kraume M. and Szewzyk U. (1999). Operation of different membrane bioreactor experimental results and physiological state of the microorganisms. Proc. IWA Conf. Membrane Technology in Environmental Management, Tokyo, 310-316.
Saiki R. K., Gelfand D. H., Stoffel S. J., Higuchi R., Horn G. T., Mullis K. B. and Erlich H. A.(1988). Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239 (4839), 487-491.
Snaidr J., Amann R., Huber I., Ludwig W., and Schleifer K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol., 63(7), 2884-2896.
Smith J. C., Di Gregorio D. and Talcott R. M. (1969). The use of membrane for activated sludge separation. 24th Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Indiana, U.S.A., 1300-1310.
Wand E. T., Van Berkum P., Sui X. H., Beyene D., Chen W. X. and Martínez-Romero E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soild and description of Mesorhizobium amorphae sp. nov.. International Journal of Systematic Bacteriology, 49, 51-65.
Yamaguchi S. and Yokoe M. (2000). A Novel Protein-Deamidating Enzyme from Chryseobacterium proteolyticun sp. nov., a Newly Isolated Bacterium from Soil. Applied and Environmental Microbiology, 66(8), 3337-3343.
Yoon S. H., Kim H. S., Park J. K. and Sung J. Y. (1999). Influence of important operation parameters of a membrane biological reactor. IWA Conf. Membrane Technology in Environmental Management, Tokyo. 278-285.
You S. J., Kaung M. C., Chen J. P., Ouyang C. F. (2001). The identification of microorganism diversity in an aerobic denitrification membrane bioreactor by molecular biotechnology. Proceedings Ⅰ of Asian Waterqual, First IWA Asia-Pacific Regional Conference, Fukuoka, Janpan. 165-170.
Zhang B. (1997). A Study on Microbial Activities and the Role of Predators in membrane Separation Activated Sludge Process. Ph. D. thesis, Department of Urban Engineering, University of Tokyo.
歐陽嶠暉,(2000)下水道工程學,長松出版社
康美祝、游勝傑、歐陽嶠暉,(2001) “薄膜生物反應槽(MBR)在廢水工程上之應用”,國立中央大學環境工程學刊,第七期,第9-18頁。
指導教授 歐陽嶠暉(Chaio-Fuei Ouyang) 審核日期 2002-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡