博碩士論文 89341005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.237.183.249
姓名 董學儒(Shyue-Ru Doong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
(Heterogeneous adsorption of infectious bursal disease virus and VP2 subviral particles to immobilized Ni2+ ions)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 液滴潤濕與接觸角遲滯
★ 親溶劑奈米粒子於高分子溶液中的自組裝現象★ 具界面活性溶質之蒸發殘留圖形研究
★ 奈米自泳動粒子之擴散行為★ 抗氧化奈米銅粒子的製備及分析
★ 柱狀自泳動粒子之擴散行為與沉降平衡★ 過氧化氫的界面性質與穩定性
★ 液橋分離與液面爬升物體之研究★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 先前研究證實傳染性華氏囊病病毒(infectious bursal disease virus, IBDV)VP2-452H蛋白自我組裝形成的次病毒顆粒,能以Ni-NTA親和管柱單一步驟純化。但經由VP2-452H次病毒顆粒之X-ray晶體繞射分析與酵素連結免疫分析法,證實VP2-452H蛋白所融合之His-tag並未暴露於次病毒顆粒表面,故推論VP2-452H次病毒顆粒可被固定化金屬離子親和層析純化之原因,是本身顆粒表面即具能與固定化金屬離子形成作用力。為此以Ni-NTA管柱純化VP2蛋白構成病毒外鞘之IBDV病毒與未融合His-tag的重組VP2-441次病毒顆粒。純化結果為IBDV病毒回收率達60.5%,而次病毒顆粒的純度與回收率達92%。再者藉由穿透式電子顯微鏡之觀察,證實分別純化IBDV與VP2-441次病毒顆粒後的樣品中,有粒徑為65 nm的IBDV病毒顆粒與25 nm的次病毒顆粒粒子。証實IBDV病毒表面能與固定化金屬離子形成親和力之特性。然而本研究以單點突變技術更進一步解釋病毒表面主要由哪種胺基酸構成病毒顆粒被Ni-NTA管柱純化,VP2-441胺基酸序列中的His249與His253經置換為Ala後,所表現的重組次病毒顆粒是無法以Ni-NTA管柱純化。由上述實驗結果證實IBDV VP2蛋白胺基酸序列中之His249與His253能使蛋白在組裝後的病毒顆粒具有與固定化鎳離子產生親和力的特性,故能幫助IBDV與次病毒顆粒藉由Ni-NTA管柱純化。本研究以恆溫吸附實驗解釋病毒顆粒表面是以多個His253,與固定化金屬離子形成親和力,使次病毒顆粒能被有效純化。首先以恆溫吸附曲線圖比較出VP2-441次病毒顆粒對Ni-NTA樹脂的吸附力高於表面帶有2-3個histidine之BSA蛋白,說明次病毒顆粒表面需提供數個His253增進顆粒對樹脂之吸附力。再者,次病毒顆粒與Ni-NTA樹脂間產生的異相吸附行為與BSA蛋白不同,由Scatchard plot分析恆溫吸附圖形,顯示VP2-441次病毒顆粒之曲線走勢呈現concave up的屬性,而BSA蛋白為concave down。此外發現單位體積Ni-NTA樹脂對次病毒顆粒的飽和吸附量低於BSA蛋白近400倍。為此本研究以共軛焦顯微鏡分析觀察樹脂吸附次病毒顆粒後之螢光分布,顯示只有在樹脂表面有螢光散布,意指次病毒顆粒不易進入孔洞過小的樹脂內進行吸附,顯示目前使用之Ni-NTA樹脂並不能有效地吸附次病毒顆粒。最後次病毒顆粒與BSA蛋白之恆溫吸附曲線以Langmuir-Freundlich模式進行適配,顯示VP2-441次病毒顆粒對Ni-NTA樹脂的吸附力高於BSA蛋白300倍,証實VP2-441次病毒顆粒對Ni-NTA樹脂有較強的吸附力。VP2-441次病毒顆粒的concave up的曲線屬性,可經由Temkin模式適配,顯示KT值為5×1010 M-1,意指兩者之間的吸附力近似抗體與抗原間之作用力。
摘要(英) The protein VP2, matured from the polyprotein, which was encoded by the genome of infectious bursal disease virus (IBDV), is the primary host-protective immunogen of IBDV. According to VP2-452H subviral particle (SVP) analysis, the determination crystal structure and enzyme-linked immunosorbent assay (ELSIA), showed thar His-tag was not exposed on the surface of VP2-452H SVPs. Thus illustrate that the His-tag apparently did not attribute to the effective purification of this protein by IMAC. An affinity must have existed between the protein VP2 and the immobilized metal ions to achieve SVP binding with Ni-NTA resin. Accordingly, the IBDV generated from DF-1 cell culture and non-tagged VP2-441 SVP generated from a baculovirus-insect cell expression system were purified by IMAC. The purification of IBDV viron through IMAC obtained a 60.5% recovery, and the IMAC-purified IBDV has a similar morphology to the wild-type IBDV with a diameter of 65 nm through electron microscope observation. For SVP formed by VP2-441 purified by IMAC a recovery 92% and a purity of also 92% of mature VP2 were obtained. SVP formed by VP2-441 exhibited a diameter approximately 25 nm. These results obtained from the above experiments can demonstrate 1) the protein VP2 does have interaction with immobilized nickel ion; and 2) the protein VP2 can assist both IBDV viron and SVPs to have the affinity with Ni-NTA resin.
The recombinant protein VP2-441, i.e., a structural protein VP2 of infectious bursal disease (IBD) virus, can self-assemble into T=1 subviral particles (SVPs) in baculovirus expression system. These SVPs are not to have multiple his-tags on the surface which result in an efficient purification by immobilized metal-ion affinity chromatography (IMAC). This study aimed at getting more insight into the interaction between VP2-441 SVPs and immobilized metal (Ni2+) ions at molecular level. First of all, large quantity of highly purified VP2-441 SVPs obtained by a one-step purification process allowed the performance of equilibrium adsorption measurements and subsequent determinations of binding constants by fitting two isotherm models, i.e., Temkin and Langmuir-Freundlich. Two general conclusion are obtained, first, the maximum bound VP2-441 SVPs per volume resin is limited because the pore size of IMA gel (ca. 24 nm in diameter) is similar to that of SVPs (20 – 25 nm) and the diffusion of the latter into the pores is hindered. The other is that SVPs have an extremely high affinity to the immobilized Ni+2 ions because the dissociate constants obtained from different models are in the scale of 10-9 M, which suggested the interaction mimicking that between an antigen and its antibody. The high binding strength is derived from a multiple-site binding between VP2-441 SVPs and Ni2+ ions as demonstrated by a concave-up Scatchard plot. Finally, we found that the adsorption of SVPs can be well described by Temkin model. A detail understanding of SVP-immobilized metal ion interactions can provide useful strategies for conducting preparative-scale separations of SVPs or even a real virus using IMAC.
關鍵字(中) ★ 傳染性華氏囊病病毒 關鍵字(英) ★ subviral partic
★ infectious bursal disease virus
論文目次 一.文獻回顧---1
二.前言---25
三.材料方法---29
四.結果---44
五.討論---58
六.參考文獻---68
七.圖表---81
參考文獻 李孟修。(2004)。家禽傳染性華氏囊病毒之VPX蛋白及多蛋白在昆蟲細胞中之表現、蛋白裂解與似病毒顆粒組裝之研究。博士論文。國立中興大學生物科技學研究所。中華民國。
林育江。(2003)。傳染性華氏囊病毒結構蛋白VP2之C端區域對形成似病毒顆粒及免疫力之影響。碩士論文。國立中興大學生物化學研究所。中華民國。
郭永煙。(1998)。利用昆蟲細胞桿狀病毒表現系統生產似病毒粒子當作雞華氏囊病之疫苗。碩士論文。國立中興大學農業生物科技學研究所。中華民國。
Ansari, R. R. & Suh, K. I. (1995). Sizing of colloidal particles and protein molecules in a hanging fluid drop. Proc. Biomedical Optoelectronics in Clinical Chemistry and Biotechnology, SPIE, 2629, 12-19.
Arnold, F. H. (1991). Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 9, 151-6.
Azad, A. A., Barrett, S. A. & Fahey, K. J. (1985). The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143, 35-44.
Azad, A. A., Jagadish, M. N., Brown, M. A. & Hudson, P. J. (1987). Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161, 145-52.
Azad, A. A., McKern, N. M., Macreadie, I. G., Failla, P., Heine, H. G., Chapman, A., Ward, C. W. & Fahey, K. J. (1991). Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine 9, 715-22.
Bayliss, C. D., Spies, U., Shaw, K., Peters, R. W., Papageorgiou, A., Muller, H. & Boursnell, M. E. (1990). A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol 71 1303-12.
Becht, H., Muller, H. & Muller, H. K. (1988). Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J Gen Virol 69 ( Pt 3), 631-40.
Belew, M. & Porath, J. (1990). Immobilized metal ion affinity chromatography. Effect of solute structure, ligand density and salt concentration on the retention of peptides. J Chromatogr 516, 333-54.
Birghan, C., Mundt, E. & Gorbalenya, A. E. (2000). A non-canonical lon proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. Embo J 19, 114-23.
Caston, J. R., Martinez-Torrecuadrada, J. L., Maraver, A., Lombardo, E., Rodriguez, J. F., Casal, J. I. & Carrascosa, J. L. (2001). C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75, 10815-28.
Cha, H. J., Wu, C. F., Valdes, J. J., Rao, G. & Bentley, W. E. (2000). Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol Bioeng 67, 565-74.
Chaga, G. S. (2001). Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49, 313-34.
Chen, C. S., Suen, S. Y., Lai, S. Y., Chang, G. R., Lu, T. C., Lee, M. S. & Wang, M. Y. (2005). Purification of capsid-like particles of infectious bursal disease virus (IBDV) VP2 expressed in E. coli with a metal-ion affinity membrane system. J Virol Methods 130, 51-8.
Chen, W.-Y., Wu, C.-F. & Liu, C.-C. (1996). Interactions of imidazole and proteins with immobilized Cu (II) ions: effects of structure, salt concentration, and pH in afinity and binding capacity. Journal of colloid and interface science 180, 135-143.
Cheng, Y. S., Lee, M. S., Lai, S. Y., Doong, S. R. & Wang, M. Y. (2001). Separation of pure and immunoreactive virus-like particles using gel filtration chromatography following immobilized metal ion affinity chromatography. Biotechnol Prog 17, 318-25.
Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B. & Rey, F. A. (2005). The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120, 761-72.
Da Costa, B., Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault, J., Boot, H. & Delmas, B. (2002). The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol 76, 2393-402.
Dobos, P., Hill, B. J., Hallett, R., Kells, D. T., Becht, H. & Teninges, D. (1979). Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32, 593-605.
Fahey, K. J., Erny, K. & Crooks, J. (1989). A conformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens. J Gen Virol 70 ( Pt 6), 1473-81.
Gaberc-Porekar, V. & Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49, 335-60.
Gaberc-Porekar, V., Menart, V., Jevsevar, S., Vidensek, A. & Stalc, A. (1999). Histidines in affinity tags and surface clusters for immobilized metal-ion affinity chromatography of trimeric tumor necrosis factor alpha. J Chromatogr A 852, 117-28.
Heine, H. G., Haritou, M., Failla, P., Fahey, K. & Azad, A. (1991). Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J Gen Virol 72 ( Pt 8), 1835-43.
Hochuli, E., Dobeli, H. & Schacher, A. (1987). New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411, 177-84.
Hu, Y. C., Bentley, W. E., Edwards, G. H. & Vakharia, V. N. (1999). Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnol Bioeng 63, 721-9.
Hu, Y. C., Tsai, C. T., Chung, Y. C., Lu, J. T. & Hsu, J. T. A. (2003). Generation of chimeric baculovirus with histidine-tags displayrd on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb Technol 33, 445-452.
Hutchens, T. W. & Yip, T. T. (1990). Protein interactions with immobilized transition metal ions: quantitative evaluations of variations in affinity and binding capacity. Anal Biochem 191, 160-8.
Hutchens, T. W., Yip, T. T. & Porath, J. (1988). Protein interaction with immobilized ligands: quantitative analyses of equilibrium partition data and comparison with analytical chromatographic approaches using immobilized metal affinity adsorbents. Anal Biochem 170, 168-82.
Jiang, C., Wechuck, J. B., Goins, W. F., Krisky, D. M., Wolfe, D., Ataai, M. M. & Glorioso, J. C. (2004). Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol 78, 8994-9006.
Johnson, R. D. & Arnold, F. H. (1995a). Multipoint binding and heterogeneity in immobilized metal affinity chromatography. Biotechnol Bioeng 48, 437-443.
Johnson, R. D. & Arnold, F. H. (1995b). The Temkin isotherm describes heterogeneous protein adsorption. Biochim Biophys Acta 1247, 293-7.
Johnson, R. D., Todd, R. J. & Arnold, F. H. (1996). Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes c. J Chromatogr A 725, 225-35.
Kinet, S., Bernichtein, S., Kelly, P. A., Martial, J. A. & Goffin, V. (1999). Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. J Biol Chem 274, 26033-43.
Kochan, G., Gonzalez, D. & Rodriguez, J. F. (2003). Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol 148, 723-44.
Komissarov, A. A., Marchbank, M. T. & Deutscher, S. L. (1997). The use of Ni-nitrilotriacetic acid agarose for estimation of affinities of hexahistidine-tagged Fab to single-stranded DNA. Anal Biochem 247, 123-9.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40, 1361-1430.
Lee, C. C., Ko, T. P., Chou, C. C., Yoshimura, M., Doong, S. R., Wang, M. Y. & Wang, A. H. J. (2006). Crystal sturcture of infectious bursal disease virus VP2 subviral particle at 2.6A ˚ resolution: Implications in viron assembly and immunogenicity. J Struct Bio.
Lejal, N., Da Costa, B., Huet, J. C. & Delmas, B. (2000). Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol 81, 983-92.
Liesiene, J., Racaityte, K., Morkeviciene, M., Valancius, P. & Bumelis, V. (1997). Immobilized metal affinity chromatography of human growth hormone. Effect of ligand density. J Chromatogr A 764, 27-33.
Lim, B. L., Cao, Y., Yu, T. & Mo, C. W. (1999). Adaptation of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. J Virol 73, 2854-62.
Lombardo, E., Maraver, A., Cast n, J. R., Rivera, J., Fernandez-Arias, A., Serrano, A., Carrascosa, J. L. & Rodriguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73, 6973-83.
Louie, G. V. & Brayer, G. D. (1990). High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol 214, 527-55.
Lowman, H. B., Cunningham, B. C. & Wells, J. A. (1991). Mutational analysis and protein engineering of receptor-binding determinants in human placental lactogen. J Biol Chem 266, 10982-8.
Macreadie, I. G., Vaughan, P. R., Chapman, A. J., McKern, N. M., Jagadish, M. N., Heine, H. G., Ward, C. W., Fahey, K. J. & Azad, A. A. (1990). Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine 8, 549-52.
Maisano, F., Testori, S. A. & Grandi, G. (1989). Immobilized metal-ion affinity chromatography of human growth hormone. J Chromatogr 472, 422-7.
Maraver, A., Clemente, R., Rodriguez, J. F. & Lombardo, E. (2003a). Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol 77, 2459-68.
Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J. A., Caston, J. R., Pazos, F. & Rodriguez, J. F. (2003b). The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 77, 6438-49.
Martinez-Torrecuadrada, J. L., Saubi, N., Pages-Mante, A., Caston, J. R., Espuna, E. & Casal, J. I. (2003). Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 21, 1952-60.
McNerney, T. M., Watson, S. K., Sim, J. H. & Bridenbaugh, R. L. (1996). Separation of recombinant human growth hormone from Escherichia coli cell pellet extract by capillary zone electrophoresis. J Chromatogr A 744, 223-9.
Mundt, E., Beyer, J. & Muller, H. (1995). Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol 76 ( Pt 2), 437-43.
Mundt, E., Kollner, B. & Kretzschmar, D. (1997). VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol 71, 5647-51.
Nick, H., Cursiefen, D. & Becht, H. (1976). Structural and growth characteristics of infectious bursal disease virus. J Virol 18, 227-34.
Okoye, J. O. & Uzoukwu, M. (1981). An outbreak of infectious bursal disease among chickens between 16 and 20 weeks old. Avian Dis 25, 1034-8.
Ozel, M. & Gelderblom, H. (1985). Capsid symmetry of viruses of the proposed Birnavirus group. Arch Virol 84, 149-61.
Pearson, R. G. & rearson, R. G. (1973). Hard and soft acids and bases. Stroudsburg, PA: Hutchington & Ross, 53-59, 67-85.
Permyakov, E. A., Veprintsev, D. B., Deikus, G. Y., Permyakov, S. E., Kalinichenko, L. P., Grishchenko, V. M. & Brooks, C. L. (1997). pH-induced transition and Zn2+-binding properties of bovine prolactin. FEBS Lett 405, 273-6.
Pitcovski, J., Di-Castro, D., Shaaltiel, Y., Azriel, A., Gutter, B., Yarkoni, E., Michael, A., Krispel, S. & Levi, B. Z. (1996). Insect cell-derived VP2 of infectious bursal disease virus confers protection against the disease in chickens. Avian Dis 40, 753-61.
Porath, J. (1992). Immobilized metal ion affinity chromatography. Protein Expr Purif 3, 263-81.
Porath, J., Carlsson, J., Olsson, I. & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-9.
Saugar, I., Luque, D., Ona, A., Rodriguez, J. F., Carrascosa, J. L., Trus, B. L. & Caston, J. R. (2005). Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Structure 13, 1007-17.
Sharma, S. & Agarwal, G. P. (2001). Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochem 288, 126-40.
Suen, S. Y. (1997). An isotherm model describing concave-down Scatchard curve for heterogeneous affinity adsorption. J Chem Technol Biotechnol 70, 278-286.
Suh, C. W., Choi, G. S. & Lee, E. K. (2003). Enzymic cleavage of fusion protein using immobilized urokinase covalently conjugated to glyoxyl-agarose. Biotechnol Appl Biochem 37, 149-55.
Sulkowski, E. (1989). The saga of IMAC and MIT. Bioessays 10, 170-5.
Sulkowski, E. (1996). Immobilized metal-ion affinity chromatography: imidazole proton pump and chromatographic sequelae. II. Chromatographic sequelae. J Mol Recognit 9, 494-8.
Todd, R. J., Johnson, R. D. & Arnold, F. H. (1994). Multiple-site binding interactions in metal-affinity chromatography. I. Equilibrium binding of engineered histidine-containing cytochromes c. J Chromatogr A 662, 13-26.
Ueda, E. K., Gout, P. W. & Morganti, L. (2001). Ni(II)-based immobilized metal ion affinity chromatography of recombinant human prolactin from periplasmic Escherichia coli extracts. J Chromatogr A 922, 165-75.
Ueda, E. K., Gout, P. W. & Morganti, L. (2003). Current and prospective applications of metal ion-protein binding. J Chromatogr A 988, 1-23.
Vakharia, V. N., Snyder, D. B., He, J., Edwards, G. H., Savage, P. K. & Mengel-Whereat, S. A. (1993). Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens. J Gen Virol 74 1201-6.
van Loon, A. A., de Haas, N., Zeyda, I. & Mundt, E. (2002). Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chickens. J Gen Virol 83, 121-9.
Wang, M. Y., Kuo, Y. Y., Lee, M. S., Doong, S. R., Ho, J. Y. & Lee, L. H. (2000). Self-assembly of the infectious bursal disease virus capsid protein, rVP2, expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography. Biotechnol Bioeng 67, 104-11.
Wyeth, P. J. (1975). Effect of infectious bursal disease on the response of chickens to S typhimurium and E coli infections. Vet Rec 96, 238-43.
Wyeth, P. J. & Cullen, G. A. (1978a). Susceptibility of chicks to infectious bursal disease (IBD) following vaccination of their parents with live IBD vaccine. Vet Rec 103, 281-2.
Wyeth, P. J. & Cullen, G. A. (1978b). Transmission of immunity from inactivated infectious bursal disease oil-emulsion vaccinated parent chickens to their chicks. Vet Rec 102, 362-3.
Yao, K. & Vakharia, V. N. (2001). Induction of apoptosis in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus: possible role in viral pathogenesis. Virology 285, 50-8.
Ye, K., Jin, S., Ataai, M. M., Schultz, J. S. & Ibeh, J. (2004). Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography. J Virol 78, 9820-7.
Yu-Chen, H., Tsai, C.-T., Chung, Y.-C., Lu, J.-T. & Hsu, J. T.-A. (2003). Generation of chimeric baculovirus with histidine-tags displayrd on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb. Technol. 33, 445-452.
Zhang, H. G., Xie, J., Dmitriev, I., Kashentseva, E., Curiel, D. T., Hsu, H. C. & Mountz, J. D. (2002). Addition of six-His-tagged peptide to the C terminus of adeno-associated virus VP3 does not affect viral tropism or production. J Virol 76, 12023-31.
指導教授 曹恆光、王敏盈
(Heng-Kwong Tsao、Min-Ying Wang)
審核日期 2006-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明