博碩士論文 89341013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.219.20.239
姓名 陳建偉(Chien-wei Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分散性奈米粒子合成及複合材料之製備
(The synthesis of highly dispersed nanoparticles and preparation of nanocomposites)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之最終目標在製備高折射率奈米複合樹脂透明厚膜,其中複合膜中有機材料的部分選用作為LED封裝材料的環氧樹酯ERL-4221(折射率1.5)。無機材料的部份則是選用奈米氧化鈦與奈米氧化鋯,這兩種材料的折射率都在2以上(anatase 相氧化鈦折射率為2.3,氧化鋯則為2.1),是常見金屬氧化物中折射率較高的,適合被用作提升有機材料的折射率。
初期首要工作為合成高分散性奈米氧化鈦與奈米氧化鋯結晶。為了使奈米複合樹脂厚膜具備透明性及高折射率,因此勢必控制奈米粒子的分散性及結晶大小。我們針對奈米結晶合成過程中的前驅物水解控制、中和pH 及水熱條件(pH、溫度及時間)等作探討,尋找出適合本研究之最終目標的高分散性奈米氧化鈦與奈米氧化鋯結晶之最佳合成條件。
得到高分散性奈米氧化鈦與奈米氧化鋯結晶之後,我們另外研究了TiO2-ZrO2 混合氧化物的合成,試圖瞭解奈米結晶的導入是否具有優勢。最後發現控制鈦源和鋯源的混合方式,經過600℃鍛燒後可以得到ZrTiO4 奈米結晶。
製備奈米複合樹脂必須使奈米結晶與環氧樹酯ERL-4221 均勻混摻或者是彼此產生化學鍵結進而完成交聯硬化,兩者都必須將奈米結晶經過表面改質,方可達成。我們嘗試了油酸、有機胺與矽烷的表面改質,將奈米氧化鈦與氧化鋯結晶分散在有機溶劑中,使其可以與環氧樹酯ERL-4221 均勻混摻。
最後我們選擇將水相分散的奈米氧化鈦與奈米氧化鋯結晶,經過
MPTMS/GPTMS 矽烷改質後,分散在醋酸乙酯中,與環氧樹酯ERL-4221 混摻後,以刮刀塗佈法鍍膜後經過加熱硬化,可以得到奈米TiO2/Epoxy 與ZrO2/Epoxy複合透明厚膜。其中氧化鋯(氧化鈦)含量提高到~45 wt%,折射率可以提升到1.63(1.7),膜厚2-13 μm (8-35 μm),而且厚膜之光穿透度在波長600nm 位置時仍有90%以上。
摘要(英) The objective of this research is the preparation of high refractive index transparent nanocomposite thick film. The organic matrix of nanocomposite, epoxy resin ERL-4221 (refractive index is 1.5) is used as an encapsulant of LED. The inorganic material is selected nano-TiO2 and nano-ZrO2 which the refractive index of the two materials are higher than 2 (the refractive index of anatase-TiO2 is 2.3,compared to 2.1 for ZrO2) to enhance the refractive index of organic materials.
The primary work is the synthesis of highly dispersed TiO2 and ZrO2 nanoparticles. For high refractive index transparent nanocomposite, it is necessary to control the dispersity and crystal size of TiO2 and ZrO2. The influences of hydrolysis of precursors, pH value of neutralization and hydrothermal condition(pH, temp. and
time) in the synthesis process of highly dispersed TiO2 and ZrO2 nanoparticles were discussed.
In addition, the preparation of TiO2-ZrO2 mixed oxide was studied. The interesting was whether the advantages of TiO2 and ZrO2 nanocrystals imported for preparation of ZrTiO4 nanocrystal. ZrTiO4 nanocrystal was prepared with the coprecipitation of methacrylic acid-TiCl4 and methacrylic acid-ZrOCl2 by calcination at 600℃.
To disperse nanoparticles and epoxy resin in organic solvent, surface modification of the nanoparticles is pivotal. Surface modification of nanoparticles with oleic acid (sodium oleate), n-hexylamine (dodecylamine) or silane
(3-methacryloyloxy propyl trimethoxysilane and 3-glycidoxy propyl trimethoxysilane) allowed nanoparticles to be dispersed in n-hexane, chloroform and ethylacetate.
The MPTMS&GPTMS-modified TiO2 and ZrO2 dispersions in ethylacetate were blended with epoxy resin ERL-4221 and curing agent. The TiO2/epoxy and ZrO2/epoxy nanocomposite thick film was prepared with MPTMS&GPTMS modified
nanoparticles and epoxy resin ERL-4221 which were dispersed in ethylacetate by blade-coating and thermal curing. The thickness of TiO2/epoxy and ZrO2/epoxy
nanocomposite thick film which contained 15-45 wt% TiO2 or ZrO2 was 2-13 μm and 8-35 μm individually. The refractive index of TiO2/epoxy and ZrO2/epoxy
nanocomposite thick film was up to 1.7 and 1.63 respectively. The optical transmittance of TiO2/epoxy and ZrO2/epoxy nanocomposite thick film was higher than 80% at wavelength of 600 nm.
關鍵字(中) ★ epoxy
★ 氧化鋯
★ 水熱法
★ 高折射率複合材料
★ 高分散性奈米粒子
★ 氧化鈦
★ 奈米結晶
關鍵字(英) ★ highly dispersed nanoparticles
★ high refractive index nanocomposite
★ hydrothermal
★ epoxy
★ titania
★ zirconia
★ nanocrystal
論文目次 目錄
摘要............................................................................................................................... I
Abstract ......................................................................................................................... II
致謝..............................................................................................................................IV
目錄..............................................................................................................................VI
圖目錄..........................................................................................................................IX
表目錄........................................................................................................................ XII
1 第一章 高分散性氧化鈦奈米粒子的合成..............................................................1
1-1 前言............................................................................................................1
1-2 氧化鈦性質及應用....................................................................................6
1-3 文獻回顧....................................................................................................9
1-4 實驗方法與結果討論..............................................................................20
1-4-1 四氯化鈦之水解..........................................................................22
1-4-2 中和pH之影響.............................................................................26
1-4-3 水熱條件(pH、溫度與時間)之影響..........................................33
1-4-4 高分散性奈米氧化鈦結晶透明溶膠..........................................37
1-5 結論與建議..............................................................................................45
2 第二章 高分散性氧化鋯奈米粒子的合成............................................................46
2-1 前言..........................................................................................................46
2-2 奈米氧化鋯合成文獻回顧......................................................................51
2-3 實驗方法與結果討論..............................................................................61
2-3-1 氯氧鋯溶液之老化及添加壓克力酸..........................................63
VII
2-3-2 中和pH的選擇及添加保護劑之作用.........................................69
2-3-3 水熱條件對結晶的影響..............................................................75
2-3-4 中性分散之奈米氧化鋯結晶透明水溶膠..................................81
2-4 結論與建議..............................................................................................89
3 第三章 TiO2-ZrO2 複合氧化物之製備..................................................................90
3-1 前言..........................................................................................................90
3-2 文獻回顧..................................................................................................92
3-3 實驗方法與結果討論..............................................................................98
3-3-1 在四氯化鈦和氯氧鋯中加入壓克力酸......................................99
3-3-2 混合奈米氧化鈦和氫氧化鋯....................................................102
3-3-3 混合奈米氧化鈦和奈米氧化鋯結晶........................................105
3-3-4 水熱法製備ZrTiO4 ....................................................................107
3-4 結論........................................................................................................ 111
4 第四章 高折射率奈米TiO2/Epoxy與ZrO2/Epoxy複材之製備...........................112
4-1 前言........................................................................................................112
4-2 文獻回顧................................................................................................114
4-3 奈米粒子的表面改質............................................................................124
4-3-1 利用油酸或油酸鈉進行表面改質............................................128
4-3-2 利用胺類進行表面改質............................................................136
4-3-3 利用矽烷進行表面改質............................................................140
4-4 奈米TiO2/Epoxy與ZrO2/Epoxy複材之製備.........................................143
4-5 結論........................................................................................................149
5 第五章 總結..........................................................................................................156
附錄一 實驗藥品......................................................................................................157
VIII
附錄二 儀器分析......................................................................................................159
參考文獻....................................................................................................................164
IX
圖目錄
圖 1-1 奈米氧化鈦水溶膠合成實驗流程圖............................................................21
圖 1-2 羧酸配位基與金屬鹽的配位模式(M可為Ti或Zr等過渡金屬)86 ................25
圖 1-3 壓克力酸與TiCl4 的配位模式示意圖...........................................................25
圖 1-4 不同pH值中和所得水合物經過水洗以及乙醇清洗後之TGA與DSC圖。A
為TGA熱重損失曲線,B為TGA熱重損失微分曲線圖,C為DSC曲線圖。........30
圖 1-5 不同pH值中和所得鈦水合物經過水洗以及乙醇清洗後之XRD圖。A和B為
pH1.5 中和,C和D為pH4 中和;A和C為經過四次水洗,B和D則是四次水洗後再
經過一次乙醇清洗。..................................................................................................31
圖1-6 pH1.5 和10 中和後所得水合物(TiCl4 添加2mmol MA/g氧化鈦)經過110℃
水熱9 小時(水熱pH1.5 或10)之XRD圖。..............................................................36
圖1-7 奈米氧化鈦結晶粒子酸性水溶膠加入不同有機酸作表面改質後之zeta
potential圖。................................................................................................................40
圖1-8 酸性和中性氧化鈦水溶膠乾燥後粉體之XRD圖。.....................................42
圖 1-9 氧化鈦酸性或中性水溶膠之TEM圖。左圖為氧化鈦酸性水溶膠,右圖為
氧化鈦中性水溶膠。..................................................................................................44
圖 2-1 合成奈米氧化鋯中性半透明水溶膠之標準程序流程圖............................62
圖 2-2 樣品R1-R9 之TGA及DSC圖。A、C和E為TGA圖,B、D和F則為DSC圖。
.....................................................................................................................................67
圖2-3 氯氧鋯水溶液(或有加入MA)經過110℃加熱24 小時之UV-Visible吸收光譜
圖。..............................................................................................................................68
圖 2-4 不同pH下中和所得產物R7-R9 之FTIR光譜。...........................................74
圖 2-5 不同pH下以95℃水熱10 小時後之(A)XRD和(B)DSC圖。.....................78
圖 2-6 不同pH下以110℃水熱不同時間所得產物之XRD圖................................79
X
圖 2-7 pH11.5 溶膠在不同溫度下水熱15 小時後產物之XRD圖..........................80
圖 2-8 奈米氧化鋯結晶粒子酸性水溶膠加入不同有機酸作表面改質後之zeta
potential圖。................................................................................................................84
圖 2-9 奈米氧化鋯中性半透明水溶膠在水熱前與水熱後之XRD及DSC圖。....85
圖 2-10 在pH11.5 下110℃水熱15 小時後以及350℃鍛燒後氧化鋯之Raman光譜
.....................................................................................................................................86
圖 2-11 氧化鋯中性半透明水溶膠之UV-Vis光譜..................................................87
圖 2-12 氧化鋯奈米粒子之TEM照片,從左至右為(a)未經過表面改質;(b)TA表
面改質的氧化鋯中性溶膠;(c)經過CA表面改質的氧化鋯中性溶膠。................88
圖 3-1 不同配製方式的鈦源、鋯源經過酸鹼中和並清洗過濾之沈澱物,在不同
溫度鍛燒後之XRD圖。程序A的鈦源、鋯源配製方式是將TiCl4+MA水溶液以及
ZrOCl2+MA水溶液兩者混合後形成透明水溶液,程序B則是將程序A中所得的水
溶液經過60℃加熱12 小時,程序C則是在不加水的情況下,先將TiCl4-MA溶液
加入ZrOCl2-MA固體中,然後再加入冰水,最後形成一透明水溶液。............101
圖 3-2 酸性或中性氧化鈦奈米結晶溶膠與鋯水合物混合後以及經過鍛燒後之
XRD圖。...................................................................................................................104
圖 3-3 奈米氧化鈦與氧化鋯結晶中性水溶膠混合後經過真空乾燥所得之粉末,
經過鍛燒後之XRD圖,其中(i)as-prepared(ii)500℃(iii)600℃(iv)700℃(v)800℃鍛
燒。............................................................................................................................106
圖 3-4 以第1 種鋯鈦源混合方式得到的鋯鈦前驅物經過110℃水熱15 小時之
XRD圖。由左至右分別為程序A至C中得到的鋯鈦前驅物各自在pH8、10 和11.5
下經過110℃水熱15 小時後之XRD曲線。..........................................................109
圖 3-5 以第1 種鋯鈦源混合方式得到的鋯鈦前驅物經過不同水熱條件後之XRD
圖。由左至右分別為I. 程序A的鋯鈦前驅物在pH8、10 和11.5 下經過180℃水熱
16 小時II. 程序C的鋯鈦前驅物在pH8、10 和11.5 下經過180℃水熱15 小時III. 程
序C的鋯鈦前驅物在pH13 下分別經過110、180 和230℃水熱24 小時後之XRD曲
XI
線。............................................................................................................................110
圖 4-1 文獻中常見的數種烷氧矽烷結構式圖......................................................127
圖 4-2 烷氧矽烷接枝在金屬氧化物奈米粒子表面之反應示意圖。..................127
圖 4-3 以油酸或油酸鈉對奈米氧化鋯進行表面改質之實驗流程圖..................132
圖 4-4 氧化鋯經油酸或油酸鈉表面改質之FTIR圖..............................................133
圖 4-5 氧化鋯經油酸或油酸鈉表面改質之TGA圖...............................................134
圖 4-6 以胺類對奈米氧化鈦進行表面改質及......................................................138
圖 4-7 正十二胺表面改質氧化鈦之TGA圖..........................................................139
圖 4-8 以矽烷對奈米氧化鈦進行表面改質及......................................................142
圖4-9 奈米複合透明膜的TGA圖。其中(A)為TiO2/Epoxy系統;(B)為ZrO2/Epoxy
系統。........................................................................................................................151
圖 4-10 氧化鈦經矽烷改質後以及TiO2/Epoxy複材之FTIR圖............................152
圖 4-11 氧化鋯經矽烷改質後以及ZrO2/Epoxy複材之FTIR圖............................153
圖 4-12 TiO2/Epoxy複合透明膜之光學顯微鏡(400x倍率)照片。由左至右分別為
T-20、T40 和T60 複合透明膜。.............................................................................154
圖4-13 ZrO2/Epoxy複合透明膜之SEM照片。(A) Z-20 和(B) Z-80 複材橫截面以及
(C) Z-20 及(D) Z-60 複材俯視面。.........................................................................154
圖 4-14 TiO2/Epoxy與ZrO2/Epoxy奈米複合透明膜的折射率、透明度和氧化物固
含量關係圖。............................................................................................................155
XII
表目錄
表 1-1 製作奈米粉體的方法.......................................................................................2
表 1-2 二氧化鈦基本性質2,8 .......................................................................................8
表 1-3 以溶凝膠法製備氧化鈦之文獻列表............................................................13
表 1-4 以水熱法製備氧化鈦之文獻列表.................................................................17
表 1-5 奈米氧化鈦穩定懸浮(分散)溶膠之相關文獻列表......................................19
表 1-6 中和產物經過不同溫度鍛燒後之結晶大小................................................32
表 1-7 不同參數製備之氧化鈦酸性溶膠的粒徑分析............................................35
表 1-8 奈米氧化鈦結晶粒子酸性溶膠以不同有機酸改質後之等電點................40
表 1-9 水熱前加入CA對於氧化鈦結晶之影響.......................................................41
表 1-10 不同條件合成的奈米氧化鈦酸性(中性)水溶膠之結晶大小及表面積....43
表 2-1 奈米氧化鋯穩定懸浮(分散)溶膠之相關文獻列表......................................60
表 3-1 合成ZT結晶之相關文獻列表.......................................................................97
表 3-2 不同鋯、鈦源配置方式所得粉體700℃鍛燒後之表面積及孔洞大小...101
表 3-3 不同製備ZT方式所得粉體經不同溫度鍛燒後的晶型..............................106
表 4-1 高折射率複合材料之相關文獻..................................................................122
表 4-2 氧化鋯-正己烷分散液之DLS粒徑測量結果以及氧化鋯粒子表面螯合的
ligand量......................................................................................................................135
表 4-3 常見溶劑之溶解因子..................................................................................135
表 4-4 胺類改質氧化鈦分散於chloroform中之DLS測量結果.............................139
表 4-5 TiO2/Epoxy與ZrO2/Epoxy奈米複合透明膜之組成.....................................150
參考文獻 參考文獻
(1) Cheng, H. M.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. Chemistry of Materials
1995, 7, 663-671.
(2) Mo, S. D.; Ching, W. Y. Phys.Rev.B 1995, 51, 13023-13032.
(3) Pascual, J.; Camassel, J.; Mathieu, H. Phys.Rev.B 1978, 18, 5606.
(4) Tang, H.; Berger, H.; Schmid, P. E.; Levy, F. Solid State Commun. 1994, 92,
267-271.
(5) Fujishima, A.; Rao, T. N.; Tryk, D. A. Journal of Photochemistry and
Photobiology C: Photochemistry Reviews 2000, 1, 1-21.
(6) Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.
(7) Frank, S. N.; Bard, A. J. The Journal of Physical Chemistry 1977, 81,
1484-1488.
(8) Pfaff, G.; Reynders, P. Chem.Rev. 1999, 99, 1963-1981.
(9) Morris, G. E.; Skinner, W. A.; Self, P. G.; Smart, R. S. Colloids and Surfaces
A-Physicochemical and Engineering Aspects 1999, 155, 27-41.
(10) Wakefield, G.; Green, M.; Lipscomb, S.; Flutter, B. Mater.Sci.Technol. 2004,
20, 985-988.
(11) Zallen, R.; Moret, M. P. Solid State Commun. 2006, 137, 154-157.
(12) Li, Q. W.; Luo, G. A.; Feng, J. Electroanalysis 2001, 13, 359-363.
(13) Yuan, S. A.; Chen, W. H.; Hu, S. S. Materials Science & Engineering
C-Biomimetic and Supramolecular Systems 2005, 25, 479-485.
(14) Braun, J. H.; Baidins, A.; Marganski, R. E. Progress in Organic Coatings
1992, 20, 105-138.
(15) Farrokhpay, S. Adv.Colloid Interface Sci. 2009, 151, 24-32.
(16) Oregan, B.; Gratzel, M. Nature 1991, 353, 737-740.
165
(17) Kumar, K. N. P.; Keizer, K.; Burggraaf, A. J.; Okubo, T.; Nagamoto, H.;
Morooka, S. Nature 1992, 358, 48-51.
(18) Gribb, A. A.; Banfield, J. F. Am.Mineral. 1997, 82, 717-728.
(19) Penn, R. L.; Banfield, J. F. Am.Mineral. 1998, 83, 1077-1082.
(20) Zhang, H. Z.; Banfield, J. F. J.Mater.Chem. 1998, 8, 2073-2076.
(21) Penn, R. L.; Banfield, J. F. Am.Mineral. 1999, 84, 871-876.
(22) Zhang, H. Z.; Banfield, J. F. Am.Mineral. 1999, 84, 528-535.
(23) Banfield, J. F.; Veblen, D. R. Am.Mineral. 1992, 77, 545-557.
(24) Kim, S. J.; Park, S. D.; Jeong, Y. H.; Park, S. J.Am.Ceram.Soc. 1999, 82,
927-932.
(25) Park, S. D.; Cho, Y. H.; Kim, W. W.; Kim, S. J. J.Solid State Chem. 1999,
146, 230-238.
(26) Chen, K. Y.; Chen, Y. W. Journal of Sol-Gel Science and Technology 2003,
27, 111-117.
(27) Seo, D. S.; Kim, H.; Jung, H. C.; Lee, J. K.; Lee, A. J.Mater.Res. 2003, 18,
571-577.
(28) Lee, G. H.; Zuo, H. M. J.Am.Ceram.Soc. 2004, 87, 473-479.
(29) Yoldas, B. E. Journal of Materials Science 1986, 21, 1087-1092.
(30) Montoya, I. A.; Viveros, T.; Dominguez, J. M.; Canales, L. A.; Schifter, I.
Catal.Lett. 1992, 15, 207-217.
(31) Bischoff, B. L.; Anderson, M. A. Chemistry of Materials 1995, 7,
1772-1778.
(32) Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A.
J.Mater.Chem. 1996, 6, 1925-1932.
(33) Scolan, E.; Sanchez, C. Chemistry of Materials 1998, 10, 3217-3223.
(34) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L.
J.Am.Chem.Soc. 1999, 121, 1613-1614.
166
(35) Zhang, Q. H.; Gao, L.; Guo, J. K. J.Eur.Ceram.Soc. 2000, 20, 2153-2158.
(36) Zhu, Y. F.; Zhang, L.; Gao, C.; Cao, L. L. Journal of Materials Science 2000,
35, 4049-4054.
(37) Niederberger, M.; Bartl, M. H.; Stucky, G. D. Chemistry of Materials 2002,
14, 4364-4370.
(38) Sugimoto, T.; Zhou, X. P.; Muramatsu, A. J.Colloid Interface Sci. 2002, 252,
339-346.
(39) Sugimoto, T.; Zhou, X. P. J.Colloid Interface Sci. 2002, 252, 347-353.
(40) Sugimoto, T.; Zhou, X. P.; Muramatsu, A. J.Colloid Interface Sci. 2003, 259,
43-52.
(41) Sugimoto, T.; Zhou, X. P.; Muramatsu, A. J.Colloid Interface Sci. 2003, 259,
53-61.
(42) Cozzoli, P. D.; Kornowski, A.; Weller, H. J.Am.Chem.Soc. 2003, 125,
14539-14548.
(43) Jun, Y. W.; Casula, M. F.; Sim, J. H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P.
J.Am.Chem.Soc. 2003, 125, 15981-15985.
(44) Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chemistry of Materials 1995, 7, 663-671.
(45) Burnside, S. D.; Shklover, V.; Barbe, C.; Comte, P.; Arendse, F.; Brooks, K.;
Gratzel, M. Chemistry of Materials 1998, 10, 2419-2425.
(46) Ovenstone, J.; Yanagisawa, K. Chemistry of Materials 1999, 11, 2770-2774.
(47) Wang, C. C.; Ying, J. Y. Chemistry of Materials 1999, 11, 3113-3120.
(48) Yanagisawa, K.; Ovenstone, J. J.Phys.Chem.B 1999, 103, 7781-7787.
(49) Aruna, S. T.; Tirosh, S.; Zaban, A. J.Mater.Chem. 2000, 10, 2388-2391.
(50) Ito, S.; Yoshida, S.; Watanabe, T. Chem.Lett. 2000, 70-71.
(51) Yang, J.; Mei, S.; Ferreira, J. M. F. J.Am.Ceram.Soc. 2000, 83, 1361-1368.
(52) Yang, J.; Mei, S.; Ferreira, J. M. F. Materials Science & Engineering
C-Biomimetic and Supramolecular Systems 2001, 15, 183-185.
167
(53) Yang, J.; Mei, S.; Ferreira, J. M. F. J.Am.Ceram.Soc. 2001, 84, 1696-1702.
(54) Yin, H. B.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.;
Sakata, T.; Yanagida, S. J.Mater.Chem. 2001, 11, 1694-1703.
(55) Zheng, Y. Q.; Shi, E. R.; Chen, Z. Z.; Li, W. J.; Hu, X. F. J.Mater.Chem.
2001, 11, 1547-1551.
(56) Wu, M. M.; Lin, G.; Chen, D. H.; Wang, G. G.; He, D.; Feng, S. H.; Xu, R. R.
Chemistry of Materials 2002, 14, 1974-1980.
(57) Yang, J.; Mei, S.; Ferreira, J. M. F. J.Mater.Res. 2002, 17, 2197-2200.
(58) Kim, C. S.; Moon, B. K.; Park, J. H.; Choi, B. C.; Seo, H. J. J.Cryst.Growth
2003, 257, 309-315.
(59) Kim, C. S.; Moon, B. K.; Park, J. H.; Chung, S. T.; Son, S. M.
J.Cryst.Growth 2003, 254, 405-410.
(60) Yang, J.; Mei, S.; Ferreira, J. M. F. J.Colloid Interface Sci. 2003, 260, 82-88.
(61) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Nature 2005, 437, 121-124.
(62) Yu, K. F.; Zhao, J. Z.; Guo, Y. P.; Ding, X. F.; Hari, B.; Liu, Y. H.; Wang, Z.
C. Mater.Lett. 2005, 59, 2515-2518.
(63) Li, X. L.; Peng, Q.; Yi, J. X.; Wang, X.; Li, Y. D. Chemistry-A European
Journal 2006, 12, 2383-2391.
(64) Mahata, S.; Kundu, D. Materials Science-Poland 2009, 27, 463-470.
(65) Wu, M. M.; Long, J. B.; Huang, A. H.; Luo, Y. J.; Feng, S. H.; Xu, R. R.
Langmuir 1999, 15, 8822-8825.
(66) Li, G. L.; Wang, G. H. Nanostructured Materials 1999, 11, 663-668.
(67) Lee, M. S.; Lee, G. D.; Park, S. S.; Hong, S. S. Journal of Industrial and
Engineering Chemistry 2003, 9, 89-95.
(68) Yan, M. C.; Chen, F.; Zhang, J. L.; Anpo, M. J.Phys.Chem.B 2005, 109,
8673-8678.
(69) Vemury, S.; Pratsinis, S. E. J.Am.Ceram.Soc. 1995, 78, 2984-2992.
168
(70) Pratsinis, S. E.; Zhu, W. H.; Vemury, S. Powder Technol. 1996, 86, 87-93.
(71) Zhao, H.; Liu, X. F.; Tse, S. D. J.Aerosol Sci. 2009, 40, 919-937.
(72) Tang, J.; Redl, F.; Zhu, Y. M.; Siegrist, T.; Brus, L. E.; Steigerwald, M. L.
Nano Letters 2005, 5, 543-548.
(73) Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Chemistry of
Materials 1997, 9, 694-698.
(74) Lee, D. S.; Liu, T. K. Journal of Sol-Gel Science and Technology 2002, 25,
121-136.
(75) Kim, S. J.; Park, S. D.; Jeong, Y. H.; Park, S. Journal of the American
Ceramic Society 1999, 82, 927-932.
(76) Doeuff, S.; Henry, M.; Sanchez, C.; Livage, J. J.Non-Cryst.Solids 1987, 89,
206-216.
(77) Livage, J.; Henry, M.; Sanchez, C. Progress in Solid State Chemistry 1988,
18, 259-341.
(78) Sanchez, C.; Livage, J.; Henry, M.; Babonneau, F. J.Non-Cryst.Solids 1988,
100, 65-76.
(79) Livage, J.; Sanchez, C.; Henry, M.; Doeuff, S. Solid State Ionics 1989, 32-3,
633-638.
(80) Livage, J.; Sanchez, C. J.Non-Cryst.Solids 1992, 145, 11-19.
(81) Schubert, U.; Arpac, E.; Glaubitt, W.; Helmerich, A.; Chau, C. Chemistry of
Materials 1992, 4, 291-295.
(82) Schubert, U.; Husing, N.; Lorenz, A. Chem.Mater. 1995, 7, 2010-2027.
(83) Schubert, U.; Volkel, T.; Moszner, N. Chem.Mater. 2001, 13, 3811-3812.
(84) Schubert, U. J.Mater.Chem. 2005, 15, 3701-3715.
(85) Camail, M.; Humbert, M.; Margaillan, A.; Riondel, A.; Vernet, J. L. Polymer
1998, 39, 6525-6531.
(86) Gotoh, Y.; Imakita, J.; Ohkoshi, Y.; Nagura, M. Polymer Journal 2000, 32,
838-844.
169
(87) Sayilkan, H.; Senre, S.; Sener, E.; Arpac, E. Journal of Materials Science
1999, 34, 5325-5330.
(88) Ohtani, B.; Ogawa, Y.; Nishimoto, S. J.Phys.Chem.B 1997, 101, 3746-3752.
(89) Stojanovic, B. D.; Marinkovic, Z. V.; Brankovic, G. O.; Fidancevska, E.
Journal of Thermal Analysis and Calorimetry 2000, 60, 595-604.
(90) Xie, H. Q.; Zhang, Q. H.; Xi, T. G.; Wang, J. C.; Liu, Y. Thermochimica Acta
2002, 381, 45-48.
(91) Ragai, J. Journal of Chemical Technology & Biotechnology 1987, 40, 75-83.
(92) Velasco, M. J.; Rubio, F.; Rubio, J.; Oteo, J. L. Thermochimica Acta 1999,
326, 91-97.
(93) Jalava, J. P.; Heikkila, L.; Hovi, O.; Laiho, R.; Hiltunen, E.; Hakanen, A.;
Harma, H. Industrial & Engineering Chemistry Research 1998, 37,
1317-1323.
(94) Hague, D. C.; Mayo, M. J. J.Am.Ceram.Soc. 1994, 77, 1957-1960.
(95) Zhu, Y. C.; Liu, T.; Ding, C. X. J.Mater.Res. 1999, 14, 442-446.
(96) Mercera, P. D. L.; Vanommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.;
Ross, J. R. H. Journal of Materials Science 1992, 27, 4890-4898.
(97) Dudnik, E. V.; Zaitseva, Z. A.; Shevchenko, A. V.; Lopato, L. M. Powder
Metallurgy and Metal Ceramics 1993, 32, 581-586.
(98) Dechamps, M.; Djuricic, B.; Pickering, S. Journal of the American Ceramic
Society 1995, 78, 2873-2880.
(99) Egger, P.; Soraru, G. D.; Dire, S. Journal of the European Ceramic Society
2004, 24, 1371-1374.
(100) Garvie, R. C. J.Phys.Chem. 1978, 82, 218-224.
(101) Denkewicz, R. P. J.; TenHuisen, K. S.; Adair, J. H. Journal of Materials
Research 1990, 5, 2698-2705.
(102) Kisi, E. H.; Howard, C. J. Key Eng.Mater. 1998, 153-154, 1-35.
(103) Kisi, E. H.; Howard, C. J. Key Engineering Materials 1998, 153-154, 1-35.
170
(104) Yoshimura, M. Amer.Ceram.Soc.Bull. 1988, 67, 1950-1955.
(105) Garvie, R. C. J.Phys.Chem. 1965, 69, 1238-1243.
(106) Chatterjee, A.; Pradhan, S. K.; Datta, A.; De, M.; Chakravorty, D. Journal of
Materials Research 1994, 9, 263-265.
(107) Aita, C. R.; Wiggins, M. D.; Whig, R.; Scanlan, C. M.;
GajdardziskaJosifovska, M. J.Appl.Phys. 1996, 79, 1176-1178.
(108) Stefanic, G.; Music, S.; Grzeta, B.; Popovic, S.; Sekulic, A.
J.Phys.Chem.Solids 1998, 59, 879-885.
(109) Pacheco, G.; Fripiat, J. J. J.Phys.Chem.B 2000, 104, 11906-11911.
(110) Mitsuhashi, T.; Ichihara, M.; Tatsuke, U. Journal of the American Ceramic
Society 1974, 57, 97-101.
(111) Chraska, T.; King, A. H.; Berndt, C. C. Materials Science and Engineering
A-Structural Materials Properties Microstructure and Processing 2000, 286,
169-178.
(112) Shukla, S.; Seal, S. J.Phys.Chem.B 2004, 108, 3395-3399.
(113) Wang, H.; Li, G.; Xue, Y.; Li, L. Journal of Solid State Chemistry 2007, 180,
2790-2797.
(114) EL-Shanshoury, I. A.; Rudenko, V. A.; Ibrahim, I. A. Journal of the
American Ceramic Society 1970, 53, 264-268.
(115) Luo, T.; Liang, T.; Li, C. Journal of University of Science and Technology
Beijing: Mineral Metallurgy Materials (Eng Ed) 2005, 12, 365-369.
(116) Chen, S. G.; Wang, D. A.; Yu, M.; Li, J.; Wang, X.; Yin, Y. InterCeram:
International Ceramic Review 2007, 56, 174-177.
(117) Livage, J.; Doi, K.; Mazieres, C. Journal of the American Ceramic Society
1968, 51, 349-353.
(118) Osendi, M. I.; Moya, J. S.; Serna, C. J.; Soria, J. Journal of the American
Ceramic Society 1985, 68, 135-139.
(119) Srinivasan, R.; Davis, B. H.; Cavin, O. B.; Hubbard, C. R. Journal of the
171
American Ceramic Society 1992, 75, 1217-1222.
(120) Srinivasan, R.; Hubbard, C. R.; Cavin, O. B.; Davis, B. H. Chem.Mater.
1993, 5, 27-31.
(121) Srinivasan, R.; Watkins, T.; Hubbard, C.; Davis, B. H. Chem.Mater. 1995, 7,
725-730.
(122) Collins, D. E.; Bowman, K. J. Journal of Materials Research 1998, 13,
1230-1237.
(123) Murase, Y.; Kato, E. Journal of the American Ceramic Society 1979, 62,
527.
(124) Murase, Y.; Kato, E. Journal of the American Ceramic Society 1983, 66,
196-200.
(125) Clearfield, A. Rev.Pure Appl.Chem. 1964, 14, 91-108.
(126) Tani, E.; Yoshimura, M.; Somiya, S. Journal of the American Ceramic
Society 1983, 66, 11-14.
(127) Zeng, Y.; Fagherazzi, G.; Polizzi, S. Journal of Materials Science 1995, 30,
2153-2158.
(128) Komissarova, L. N.; Simanov, Y.; Vladimirova, Z. A. Zh.Neorg.Khim. 1960,
5, 1413-1417.
(129) Berry, F. J.; Skinner, S. J.; Bell, I. M.; Clark, R. J. H.; Ponton, C. B. Journal
of Solid State Chemistry 1999, 145, 394-400.
(130) Guo, X.; He, J. Q. Acta Materialia 2003, 51, 5123-5130.
(131) Haberko, K. Revue Internationale des Hautes Temperatures et des
Refractaires 1977, 14, 217-223.
(132) Djuricic, B.; Pickering, S.; Mcgarry, D.; Glaude, P.; Tambuyser, P.; Schuster,
K. Ceramics International 1995, 21, 195-206.
(133) Hu, M. Z. C.; Hunt, R. D.; Payzant, E. A.; Hubbard, C. R. Journal of the
American Ceramic Society 1999, 82, 2313-2320.
(134) Oliveira, A. P.; Torem, M. L. Powder Technology 2001, 119, 181-193.
172
(135) Tyagi, B.; Sidhpuria, K.; Shaik, B.; Jasra, R. V. Industrial and Engineering
Chemistry Research 2006, 45, 8643-8650.
(136) Livage, J.; Henry, M.; Sanchez, C. Progress in Solid State Chemistry 1988,
18, 259-341.
(137) Livage, J. Catalysis Today 1998, 41, 3-19.
(138) Hu, M. Z. C.; Payzant, E. A.; Byers, C. H. Journal of Colloid and Interface
Science 2000, 222, 20-36.
(139) Wang, M. L.; Liu, B. L.; Shih, Z. W. Chemical Engineering Communications
2000, 178, 21-40.
(140) Wang, J. A.; Valenzuela, M. A.; Salmones, J.; Vazquez, A.; Garcia-Ruiz, A.;
Bokhimi, X. Catalysis Today 2001, 68, 21-30.
(141) Caruso, R.; de Sanctis, O.; Macias-Garcia, A.; Benavidez, E.; Mintzer, S. R.
Journal of Materials Processing Technology 2004, 152, 299-303.
(142) Combemale, L.; Caboche, G.; Stuerga, D.; Chaumont, D. Materials Research
Bulletin 2005, 40, 529-536.
(143) Mizuno, M.; Sasaki, Y.; Lee, S.; Katakura, H. Langmuir 2006, 22,
7137-7140.
(144) Combemale, L.; Caboche, G.; Stuerga, D.; Chaumont, D. Materials Research
Bulletin 2005, 40, 529-536.
(145) Bondioli, F.; Ferrari, A. M.; Leonelli, C.; Siligardi, C.; Pellacani, G. C.
Journal of the American Ceramic Society 2001, 84, 2728-2730.
(146) Combemale, L.; Caboche, G.; Stuerga, D.; Chaumont, D. Materials Research
Bulletin 2005, 40, 529-536.
(147) Huang, Y.; Ma, T.; Yang, J. L.; Zhang, L. M.; He, J. T.; Li, H. F. Ceramics
International 2004, 30, 675-681.
(148) Shi, J. Y.; Verweij, H. Langmuir 2005, 21, 5570-5575.
(149) He, J. T.; Huang, Y.; Ma, T.; Yang, J. L. Rare Metal Materials and
Engineering 2005, 34, 56-58.
173
(150) Roy, R. Journal of the American Ceramic Society 1956, 39, 145-146.
(151) Tani, E.; Yoshimura, M.; Somiya, S. Journal of the American Ceramic
Society 1981, 64, C-181.
(152) Nishizawa, H.; Yamasaki, N.; Matsuoka, K.; Mitsushio, H. Journal of the
American Ceramic Society 1982, 65, 343-346.
(153) Bleier, A. and Cannon, R. M. Nucleation and Growth of Uniform m-ZrO2.
73, 71-78. 1986. Palo Alto, CA, USA, Materials Research Soc, Pittsburgh,
PA, USA. Materials Research Society Symposia Proceedings.
Ref Type: Conference Proceeding
(154) Bucko, M. M.; Haberko, K.; Faryna, M. Journal of the American Ceramic
Society 1995, 78, 3397-3400.
(155) Kato, E.; Hirano, M.; Kobayashi, Y.; Asoh, K.; Mori, M.; Nakata, M.
Journal of the American Ceramic Society 1996, 79, 972-976.
(156) Cheng, H. M.; Wu, L. J.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. Journal of
Materials Science Letters 1996, 15, 895-897.
(157) Matsui, K.; Ohgai, M. Journal of the American Ceramic Society 1997, 80,
1949-1956.
(158) Stefanic, G.; Popovic, S.; Music, S. Thermochimica Acta 1997, 303, 31-39.
(159) Chuah, G. K.; Jaenicke, S. Applied Catalysis A: General 1997, 163, 261-273.
(160) Shevchenko, A. V.; Ruban, A. K.; Dudnik, E. V.; Mel'nikova, V. A. Powder
Metallurgy and Metal Ceramics 1997, 36, 420-424.
(161) Hu, M. Z. C.; Harris, M. T.; Byers, C. H. Journal of Colloid and Interface
Science 1998, 198, 87-99.
(162) Cheng, H. M.; Wu, L. J.; Ma, J. M.; Zhang, Y. Y.; Qi, L. M. Journal of the
European Ceramic Society 1999, 19, 1675-1681.
(163) Lee, K.; Sathyagal, A.; Carr, P. W.; McCormick, A. V. Journal of the
American Ceramic Society 1999, 82, 338-342.
(164) Kim, Y. S.; Kwon, S. C. Journal of Nuclear Materials 1999, 270, 165-173.
174
(165) Dell'Agli, G.; Colantuono, A.; Mascolo, G. Solid State Ionics 1999, 123,
87-94.
(166) Dell'Agli, G.; Ferone, C.; Mascolo, G.; Pansini, M. Solid State Ionics 2000,
127, 223-230.
(167) Zhao, J. P.; Fan, W. H.; Wu, D.; Sun, Y. H. Journal of Materials Research
2000, 15, 402-406.
(168) Piticescu, R. R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S. Journal of the
European Ceramic Society 2001, 21, 2057-2060.
(169) Zheng, Y. Q.; Shi, E. W.; Li, W. J.; Chen, Z. Z.; Zhong, W. Z.; Hu, X. F.
Science in China Series E-Technological Sciences 2002, 45, 273-281.
(170) Cheng, H. M.; Ma, Y. R.; Liao, F. H.; Ma, J. M.; Qi, L. M. Acta
Physico-Chimica Sinica 2003, 19, 326-328.
(171) Jiao, X. L.; Chen, D. R.; Xiao, L. H. Journal of Crystal Growth 2003, 258,
158-162.
(172) Kolen'ko, Y. V.; Maximov, V. D.; Burukhin, A. A.; Muhanov, V. A.;
Churagulov, B. R. Materials Science & Engineering C-Biomimetic and
Supramolecular Systems 2003, 23, 1033-1038.
(173) Reveron, H.; Vesteghem, H. Journal of Nanoscience and Nanotechnology
2005, 5, 1643-1650.
(174) Chen, F.; Hong, Q.; Xu, G. Q.; Andy Hor, T. S.; Shen, S. Journal of the
American Ceramic Society 2005, 88, 2649-2651.
(175) Chen, F. X.; Huang, L.; Zhong, Z. Y.; Gan, G. J.; Kwan, S. M.; Kooli, F.
Materials Chemistry and Physics 2006, 97, 162-166.
(176) Qin, D.; Chen, H. Journal of Materials Science 2006, 41, 7059-7063.
(177) Meskin, P. E.; Ivanov, V. K.; Barantchikov, A. E.; Churagulov, B. R.;
Tretyakov, Y. D. Ultrasonics Sonochemistry 2006, 13, 47-53.
(178) Chen, F.; Zhu, K.; Gan, G. J.; Shen, S.; Kooli, F. Materials Research Bulletin
2007, 42, 1128-1136.
(179) Zhu, H.; Yang, D.; Xi, Z.; Zhu, L. Journal of the American Ceramic Society
175
2007, 90, 1334-1338.
(180) Tahir, M. N.; Gorgishvili, L.; Li, J. X.; Gorelik, T.; Kolb, U.; Nasdala, L.;
Tremel, W. Solid State Sciences 2007, 9, 1105-1109.
(181) Alexander, G. B. and Bugosh, J. Concentrated zirconia and hafnia aquasols
and their preparation. (US 2984628). 1961.
Ref Type: Patent
(182) Woodhead, J. L. Zirconium compounds. (US 3518050). 1970.
Ref Type: Patent
(183) Kato E. High-dispersion sol or gel of monoclinic zirconia supermicrocrystals
and production of the same. (US 4784794). 1988.
Ref Type: Patent
(184) Wusirika R.R. Preparation of mono-sized zirconia powders by forced
hydrolysis. (US 4719091). 1988.
Ref Type: Patent
(185) Schmidt, T.; Mennig, M.; Schmidt, H. Journal of the American Ceramic
Society 2007, 90, 1401-1405.
(186) Ray, J. C.; Pramanik, P.; Ram, S. Materials Letters 2001, 48, 281-291.
(187) Ray, J. C.; Pati, R. K.; Pramanik, P. Materials Letters 2001, 48, 74-80.
(188) Tietz, L. A.; Carter, C. B.; Lathrop, D. K.; Russek, S. E.; Buhrman, R. A.;
Michael, J. R. Journal of Materials Research 1989, 4, 1072-1081.
(189) Zhang, Y. W.; Yan, Z. G.; Liao, F. H.; Liao, C. S.; Yan, C. H. Materials
Research Bulletin 2004, 39, 1763-1777.
(190) Ahniyaz, A.; Fujiwara, T.; Fujino, T.; Yoshimura, M. Journal of Nanoscience
and Nanotechnology 2004, 4, 233-238.
(191) Xu, G.; Zhang, Y. W.; Liao, C. S.; Yan, C. H. Solid State Ionics 2004, 166,
391-396.
(192) Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M.; Wu, F. X.; Zhang, J. Z.; Hyeon, T.
J.Am.Chem.Soc. 2003, 125, 6553-6557.
(193) Schubert, U.; Arpac, E.; Glaubitt, W.; Helmerich, A.; Chau, C. Chem.Mater.
176
1992, 4, 291-295.
(194) Gross, S.; Trimmel, G.; Schubert, U.; Di Noto, V. Polymers for Advanced
Technologies 2002, 13, 254-259.
(195) Schubert, U. Accounts of Chemical Research 2007, 40, 730-737.
(196) Yin, H. B.; Wada, Y.; Kitamura, T.; Sumida, T.; Hasegawa, Y.; Yanagida, S.
J.Mater.Chem. 2002, 12, 378-383.
(197) Jiang, B.; Yin, H.; Jiang, T.; Yan, J.; Fan, Z.; Li, C.; Wu, J.; Wada, Y.
Materials Chemistry and Physics 2005, 92, 595-599.
(198) Jiang, B.; Yin, H.; Jiang, T.; Yan, J.; Fan, Z.; Li, C.; Wu, J.; Wada, Y.
Materials Chemistry and Physics 2005, 92, 595-599.
(199) Liang, J. H.; Jiang, X.; Liu, G.; Deng, Z. X.; Zhuang, J.; Li, F. L.; Li, Y. D.
Materials Research Bulletin 2003, 38, 161-168.
(200) Kazak, C.; Hamamci, S.; Topcu, Y.; Yilmaz, V. T. Journal of Molecular
Structure 2003, 657, 351-356.
(201) Mohajerani, M. S.; Mazloumi, M.; Lak, A.; Kajbafvala, A.; Zanganeh, S.;
Sadrnezhaad, S. K. Journal of Crystal Growth 2008, 310, 3621-3625.
(202) Shan, Z.; Gianotti, E.; Jansen, J. C.; Peters, J. A.; Marchese, L.; Maschmeyer,
T. Chemistry-A European Journal 2001, 7, 1437-1443.
(203) Guo, G. Y.; Chen, Y. L.; Ying, W. J. Materials Chemistry and Physics 2004,
84, 308-314.
(204) Li, M. J.; Feng, Z. H.; Xiong, G.; Ying, P. L.; Xin, Q.; Li, C. J.Phys.Chem.B
2001, 105, 8107-8111.
(205) Li, M. J.; Feng, Z. C.; Ying, P. L.; Xin, Q.; Li, C. Physical Chemistry
Chemical Physics 2003, 5, 5326-5332.
(206) Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. J.Phys.Chem.B 2001,
105, 8107-8111.
(207) Reddy, B. M.; Khan, A. Catalysis Reviews-Science and Engineering 2005,
47, 257-296.
177
(208) Wang, I.; Chang, W. F.; Shiau, R. J.; Wu, J. C.; Chung, C. S. Journal of
Catalysis 1983, 83, 428-436.
(209) Wu, J. C.; Chung, C. S.; Ay, C. L.; Wang, I. Journal of Catalysis 1984, 87,
98-107.
(210) Wang, I.; Wu, J. C.; Chung, C. S. Applied Catalysis 1985, 16, 89-101.
(211) Chang, R. C.; Wang, I. Journal of Catalysis 1987, 107, 195-200.
(212) Tajima, M.; Niwa, M.; Fujii, Y.; Koinuma, Y.; Aizawa, R.; Kushiyama, S.;
Kobayashi, S.; Mizuno, K.; Ohuchi, H. Appl.Catal.B Environ. 1997, 12,
263-276.
(213) Tajima, M.; Niwa, M.; Fujii, Y.; Koinuma, Y.; Aizawa, R.; Kushiyama, S.;
Kobayashi, S.; Mizuno, K.; Ohuchi, H. Appl.Catal.B Environ. 1997, 14,
97-103.
(214) Reddy, B. M.; Manohar, B.; Reddy, E. P. Langmuir 1993, 9, 1781-1785.
(215) Lu, C. M.; Lin, Y. M.; Wang, I. Appl.Catal.A Gen. 2000, 198, 223-234.
(216) Navio, J. A.; Marchena, F. J.; Macias, M.; Sanchezsoto, P. J.; Pichat, P.
Journal of Thermal Analysis 1993, 40, 1095-1102.
(217) Navio, J. A.; Colon, G. New Developments in Selective Oxidation Ii 1994, 82,
721-728.
(218) Chen, D. R.; Jiao, X. L.; Xu, R. R. J.Mater.Sci. 1999, 34, 1379-1383.
(219) Mchale, A. E.; Roth, R. S. Journal of the American Ceramic Society 1986,
69, 827-832.
(220) Bianco, A.; Gusmano, G.; Freer, R.; Smith, P. J.Eur.Ceram.Soc. 1999, 19,
959-963.
(221) Leoni, M.; Viviani, M.; Battilana, G.; Fiorello, A. M.; Viticoli, M.
J.Eur.Ceram.Soc. 2001, 21, 1739-1741.
(222) Shibata, K.; Kiyoura, T.; Kitagawa, J.; Sumiyoshi, T.; Tanabe, K.
Bull.Chem.Soc.Jpn. 1973, 46, 2985-2988.
(223) Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J.
178
Bull.Chem.Soc.Jpn. 1974, 47, 1064-1066.
(224) Manriquez, M. E.; Lopez, T.; Gomez, R.; Navarrete, J. Journal of Molecular
Catalysis A-Chemical 2004, 220, 229-237.
(225) Maity, S. K.; Rana, M. S.; Bej, S. K.; Ancheyta, J.; Dhar, G. M.; Rao, T. S. R.
P. Catalysis Letters 2001, 72, 115-119.
(226) Machida, M.; Watanabe, T.; Ikeda, S.; Kijima, T. Catalysis Communications
2002, 3, 233-238.
(227) Lin, W.; Lin, L.; Zhu, Y. X.; Xie, Y. C.; Scheurell, K.; Kernnitz, E. Journal
of Molecular Catalysis A-Chemical 2005, 226, 263-268.
(228) Jiang, N. Z.; Han, D. S.; Park, S. E. Catalysis Today 2009, 141, 344-348.
(229) Ananta, S.; Tipakontitikul, R.; Tunkasiri, T. Mater.Lett. 2003, 57, 2637-2642.
(230) Gajovic, A.; Djerdj, I.; Furic, K.; Schlogl, R.; Su, D. S. Crystal Research and
Technology 2006, 41, 1076-1081.
(231) Prasatkhetragarn, A.; Yimnirun, R.; Ananta, S. Ferroelectrics 2007, 356,
495-500.
(232) Wu, J. C.; Chung, C. S.; Ay, C. L.; Wang, I. Journal of Catalysis 1984, 87,
98-107.
(233) Ikawa, H.; Yamada, T.; Kojima, K.; Matsumoto, S. Journal of the American
Ceramic Society 1991, 74, 1459-1462.
(234) Hu, M. Z. C.; Payzant, E. A.; Booth, K. R.; Rawn, C. J.; Hunt, R. D.; Allard,
L. F. J.Mater.Sci. 2003, 38, 3831-3843.
(235) Vishwanathan, V.; Roh, H. S.; Kim, J. W.; Jun, K. W. Catalysis Letters 2004,
96, 23-28.
(236) Navio, J. A.; Marchena, F. J.; Macias, M.; Sanchezsoto, P. J.; Pichat, P.
J.Mater.Sci. 1992, 27, 2463-2467.
(237) Bhattacharya, A. K.; Mallick, K. K.; Hartridge, A.; Woodhead, J. L.
Mater.Lett. 1994, 18, 247-250.
(238) Sham, E. L.; Aranda, M. A. G.; Farfan-Torres, E. M.; Gottifredi, J. C.;
179
Martinez-Lara, M.; Bruque, S. J.Solid.State.Chem. 1998, 139, 225-232.
(239) Karakchiev, L. G.; Zima, T. M.; Lyakhov, N. Z. Inorganic Materials 2001,
37, 386-390.
(240) Zou, H.; Lin, Y. S. Appl.Catal.A Gen. 2004, 265, 35-42.
(241) Cosentino, I. C.; Muccillo, E. N. S.; Muccillo, R.; Vichi, F. M. J.Sol Gel
Sci.Technol. 2006, 37, 31-37.
(242) Liu, S. W.; Xiu, Z. L.; Pan, H.; Cui, X. P.; Yu, W. N.; Yu, J. X. J.Alloys
Compd. 2007, 437, L1-L3.
(243) Yamamoto, T. American Ceramic Society Bulletin 1992, 71, 978-985.
(244) Zhang, S. X.; Li, J. B.; Cao, J.; Zhai, H. Z.; Zhang, B. J.Eur.Ceram.Soc.
2001, 21, 2931-2936.
(245) Lai, S. Y.; Pan, W. X.; Ng, C. F. Appl.Catal.B Environ. 2000, 24, 207-217.
(246) Cerqueira, M.; Nasar, R. S.; Longo, E.; Leite, E. R.; Varela, J. A. Mater.Lett.
1995, 22, 181-185.
(247) Bianco, A.; Paci, M.; Freer, R. J.Eur.Ceram.Soc. 1998, 18, 1235-1243.
(248) Huang, J. C.; Chu, Y. P.; Wei, M.; Deanin, R. D. Advances in Polymer
Technology 2004, 23, 298-306.
(249) Lu, C. L.; Cui, Z. C.; Li, Z.; Yang, B.; Shen, J. C. J.Mater.Chem. 2003, 13,
526-530.
(250) Lu, C. L.; Guan, C.; Liu, Y. F.; Cheng, Y. R.; Yang, B. Chem.Mater. 2005, 17,
2448-2454.
(251) Weibel, M.; Caseri, W.; Suter, U. W.; Kiess, H.; Wehrli, E. Polymers for
Advanced Technologies 1991, 2, 75-80.
(252) Zimmermann, L.; Weibel, M.; Caseri, W.; Suter, U. W. J.Mater.Res. 1993, 8,
1742-1748.
(253) Chang, C. C.; Chen, W. C. Journal of Polymer Science Part A-Polymer
Chemistry 2001, 39, 3419-3427.
(254) Chen, W. C.; Lee, S. J.; Lee, L. H.; Lin, J. L. J.Mater.Chem. 1999, 9,
180
2999-3003.
(255) Lee, L. H.; Chen, W. C. Chem.Mater. 2001, 13, 1137-1142.
(256) Chen, W. C.; Liu, W. C.; Wu, P. T.; Chen, P. F. Mater.Chem.Phys. 2004, 83,
71-77.
(257) Chen, W. C.; Lee, L. H.; Chen, B. F.; Yen, C. T. J.Mater.Chem. 2002, 12,
3644-3648.
(258) Su, H. W.; Chen, W. C. Macromolecular Chemistry and Physics 2008, 209,
1778-1786.
(259) Garnweitner, G.; Goldenberg, L. M.; Sakhno, O. V.; Antonietti, M.;
Niederberger, M.; Stumpe, J. Small 2007, 3, 1626-1632.
(260) Zhou, S. X.; Garnweitner, G.; Niederberger, M.; Antonietti, M. Langmuir
2007, 23, 9178-9187.
(261) Zhou, S. X.; Wu, L. M. Macromolecular Chemistry and Physics 2008, 209,
1170-1181.
(262) Xu, K.; Zhou, S. X.; Wu, L. M. Journal of Materials Science 2009, 44,
1613-1621.
(263) Luo, K. Q.; Zhou, S. X.; Wu, L. M.; Gu, G. X. Langmuir 2008, 24,
11497-11505.
(264) Luo, K. Q.; Zhou, S. X.; Wu, L. M. Thin Solid Films 2009, 517, 5974-5980.
(265) Lu, C. L.; Cheng, Y. R.; Liu, Y. F.; Liu, F.; Yang, B. Advanced Materials
2006, 18, 1188-+.
(266) Cheng, Y. R.; Lu, C.; Lin, Z.; Liu, Y. F.; Guan, C.; Lu, H.; Yang, B.
J.Mater.Chem. 2008, 18, 4062-4068.
(267) Nakayama, N.; Hayashi, T. Journal of Applied Polymer Science 2007, 105,
3662-3672.
(268) Nakayama, N.; Hayashi, T. Composites Part A-Applied Science and
Manufacturing 2007, 38, 1996-2004.
(269) Nakayama, N.; Hayashi, T. Progress in Organic Coatings 2008, 62, 274-284.
181
(270) Yano, S.; Ito, T.; Shinoda, K.; Ikake, H.; Hagiwara, T.; Sawaguchi, T.; Kurita,
K.; Seno, M. Polymer International 2005, 54, 354-361.
(271) Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G.
Progress in Organic Coatings 2005, 54, 134-138.
(272) Yao, X. F.; Yeh, H. Y.; Zhou, D.; Zhang, Y. H. Journal of Composite
Materials 2006, 40, 371-381.
(273) Gu, J. W.; Zhang, Q. Y.; Li, H. C.; Tang, Y. S.; Kong, J.; Dang, J.
Polymer-Plastics Technology and Engineering 2007, 46, 1129-1134.
(274) Guan, C.; Lu, C. L.; Liu, Y. F.; Yang, B. Journal of Applied Polymer Science
2006, 102, 1631-1636.
(275) Huang, K. S.; Nien, Y. H.; Chen, J. S.; Shieh, T. R.; Chen, J. W. Polymer
Composites 2006, 27, 195-200.
(276) Chau, J. L. H.; Lin, Y. M.; Li, A. K.; Su, W. F.; Chang, K. S.; Hsu, S. L. C.;
Li, T. L. Materials Letters 2007, 61, 2908-2910.
(277) Chau, J. L. H.; Tung, C. T.; Lin, Y. M.; Li, A. K. Materials Letters 2008, 62,
3416-3418.
(278) Chau, J. L. H.; Liu, H. W.; Su, W. F. Journal of Physics and Chemistry of
Solids 2009, 70, 1385-1389.
(279) Mont, F. W.; Kim, J. K.; Schubert, M. F.; Schubert, E. F.; Siegel, R. W.
Journal of Applied Physics 2008, 103.
(280) Ochi, M.; Nii, D.; Suzuki, Y.; Harada, M. Journal of Materials Science 2010,
45, 2655-2661.
(281) Sangermano, M.; Amerio, E.; Epicoco, P.; Priola, A.; Rizza, G.; Malucelli, G.
Macromolecular Materials and Engineering 2007, 292, 634-640.
(282) Amerio, E.; Sangermano, M.; Malucelli, G.; Priola, A.; Rizza, G.
Macromolecular Materials and Engineering 2006, 291, 1287-1292.
(283) Amerio, E.; Sangermano, M.; Malucelli, G.; Priola, A.; Voit, B. Polymer
2005, 46, 11241-11246.
(284) Sangermano, M.; Voit, B.; Sordo, F.; Eichhorn, K. J.; Rizza, G. Polymer
182
2008, 49, 2018-2022.
(285) Sangermano, M.; Malucelli, G.; Amerio, E.; Bongiovanni, R.; Priola, A.; Di
Gianni, A.; Voit, B.; Rizza, G. Macromolecular Materials and Engineering
2006, 291, 517-523.
(286) Ruckenstein, E.; Li, Z. F. Advances in Colloid and Interface Science 2005,
113, 43-63.
(287) Yao, C.; Ding, Y. H.; Lin, X. P.; Yang, X. J.; Lu, L. D.; Wang, X. Chinese
Journal of Inorganic Chemistry 2005, 21, 638-642.
(288) Ramakrishna, G.; Ghosh, H. N. Langmuir 2003, 19, 505-508.
(289) Tang, E. J.; Tian, B. Y.; Zheng, E. L.; Fu, C. Y.; Cheng, G. X. Chemical
Engineering Communications 2008, 195, 479-491.
(290) Neouze, M. A.; Schubert, U. Monatshefte fur Chemie 2008, 139, 183-195.
(291) Hwang, D. K.; Moon, J. H.; Shul, Y. G.; Jung, K. T.; Kim, D. H.; Lee, D. W.
Journal of Sol-Gel Science and Technology 2003, 26, 783-787.
(292) Biggs, S.; Healy, T. W. J.Chem.Soc.Faraday Trans. 1994, 90, 3415-3421.
(293) Biggs, S.; Scales, P. J.; Leong, Y. K.; Healy, T. W. J.Chem.Soc.Faraday
Trans. 1995, 91, 2921-2928.
(294) Hidber, P. C.; Graule, T. J.; Gauckler, L. J. Journal of the European Ceramic
Society 1997, 17, 239-249.
(295) Li, Z. W.; Zhu, Y. F. Applied Surface Science 2003, 211, 315-320.
(296) Liu, J. C.; Jean, J. H.; Li, C. C. Journal of the American Ceramic Society
2006, 89, 882-887.
(297) Hong, R. Y.; Pan, T. T.; Qian, J. Z.; Li, H. Z. Chemical Engineering Journal
2006, 119, 71-81.
(298) Posthumus, W.; Magusin, P. C. M. M.; Brokken-Zijp, J. C. M.; Tinnemans,
A. H. A.; van der Linde, R. Journal of Colloid and Interface Science 2004,
269, 109-116.
(299) Bourgeatlami, E.; Espiard, P.; Guyot, A. Polymer 1995, 36, 4385-4389.
183
(300) Schmidt, H. K. Journal of Sol-Gel Science and Technology 1997, 8,
557-565.
(301) Miller, J. D.; Ishida, H. Surface Science 1984, 148, 601-622.
(302) Otsuka, T.; Chujo, Y. Polymer Journal 2010, 42, 58-65.
指導教授 蔣孝澈(Anthony S.T. Chiang) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明