博碩士論文 89343004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.221.187.121
姓名 張志鴻(Chih-Horng Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 合金元素(銀與鎂)與熱處理對A201鋁合金應力腐蝕與熱穩定性之影響
(Alloying Elements (Silver and Magnesium) on The Stress Corrosion Cracking and Thermal Stability of A201 Aluminum Alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) A201鋁合金(Al-4.6Cu-0.3Mg-0.6Ag)具有高強度與熱穩定性,已廣泛應用於航太與軍事工業。A201鋁合金含銀量介於0.4 wt.%至1 wt.%之間,除原有之θ′相之外,可析出具熱穩定性之強化相Ω,使合金具有極為優良的常溫與高溫(200℃以下)強度,此外在銅含量固定下鎂含量可影響析出相的種類與分布情形(Ω、S′與θ′相),故銀與鎂含量皆為影響Ω析出的重要合金元素。應用於航空設備之高強度Al-Cu鋁合金易受應力腐蝕而破壞,因此A201鋁合金之應力腐蝕敏感性極需重視,而合金的熱處理狀態則會影響應力腐蝕的性質,此外航空器材常須承受高速與空氣摩擦所引發的高溫,故合金於高溫下之熱穩定性為合金相當重要的性質。
基於合金元素與熱處理對於A201鋁合金微結構與性質上的影響,因此本研究將探討合金元素與熱處理對於合金微結構、機械強度、應力腐蝕與熱穩定性之變化與效應,以完整呈現此一高強度鋁合金之特性。
由於銀為刺激Ω相析出的重要合金元素,於本論文中首先將藉由不同銀含量(0、0.3、0.6與0.9 wt.% Ag)之合金,施以頂時效(T6)、過時效(T7)以及回復與再時效(retrogression and reaging,RRA)等不同熱處理製程來探討銀含量對於A201鑄鋁合金強化析出相、機械性質與應力腐蝕敏感性的影響;爾後,再藉由不同銅/鎂比(分別為29、19、8與4)的熱擠製Al-4.6Cu-XMg-0.6Ag合金,探討合金於107、135與155℃下1000小時之熱穩定性。
本論文透過金相、導電度(Electrical Conductivity, %IACS)、微差熱掃瞄(Differential Scanning Calorimetry)與穿透式電子顯微鏡(Transmission Electron Microscopy)等微結構之觀察與分析,配合硬度(HRB)、拉伸與應力腐蝕等合金性質上的試驗,獲得以下結論:Ω相析出量與機械強度隨銀含量增加而增加,但是銀含量高達0.9重量百分比時卻出現抑制θ′相之情形;銀含量不會影響晶界析出物,但高銀含量合金會增加富銅之強化相(Ω與θ′相)整體析出效果,導致應力腐蝕敏感性增加。相較於過時效(T7)熱處理之合金,經頂時效(T6)處理後合金無析出帶較窄,造成明顯的面積效應,導致應力腐蝕性提高,而回復與再時效(RRA)熱處理無法明顯改變晶界析出物型態或降低面積效應,故未能降低鑄造A201鋁合金應力腐蝕敏感性;高鎂含量之合金(即低銅/鎂比),產生大量之銀-鎂(Ag-Mg co-cluster)聚集,引發Ω相大量析出,故此合金擁有高強度與高熱穩定性。
摘要(英) A201 aluminum alloy (Al-4.6Cu-0.3Mg-0.6Ag) has been widely applied in the aviation and military industries due to its very high mechanical strength and thermal stability.
The silver containing, between 0.4 to 1 wt.%, is unequal characteristic of A201 alloy that change the precipitated sequence and lead to trigger precipitation of the thermal stable Ω phase along with θ′ phase of Al-Cu alloy. Due to the precipitated of Ω phase, A201 alloy possess execllent mechanical strength under 200℃. The concentration of magnesium affect the relative distribution of Ω, S′ and θ′ phases at constant copper containing that influence the thermal stability of alloy. Therefore, the concentration of silver and magnesium are both the important factor for precipitation of Ω phase. High strength Al-Cu alloy is known to be damanged by stress corrosion cracking. The heat treatment condition affect the stress corrosion cracking susceptibility of alloy. Moreover, the skin of a super sonic bear aero dynamic heating, thus, the thermal stsbility treat as an serious properties of A201 alloy.
Due to the alloying elements and heat treatment significantly affect the microstructure and properties of A201 alloy, hence, present works attempt to discover the effect of alloying elements (silver and magnesium) and heat treatment on the stress corrosion cracking and thermal stability of A201 aluminum alloy.
For the purpose of reveal the bottom of the effect on of silver and magnesium contain on precipitation of A201 alloy, present work start with made various quantity of silver (0 to 0.9 wt.%) containing alloy, subsequencely heat treated to T6, T7 and RRA condition. Second step of this investigation was performed on the different quantity of magnesium (0.15 to 1.1 wt. %) containing hot extrusion alloys. The alloys were long-term exposed at 105, 135 and 155℃ up to 1000 hours.
Microstructural features were elucidated by optical microscopy, electron probe X-ray microanalysis, measurement of electrical conductivity and differential scanning calorimetry. The microstructure was correlated with Rockwell hardness and tensile testing. The stress corrosion cracking susceptibility of alloy was assessed by performing the slow strain rate test in air and salt solution.
The results of present works revealed that the addition of Ag at a concentration of under 0.6 mass% promoted the precipitation of the Ω and θ’’ phases and the augmentation of hardness of T7 tempered alloys. 0.9 mass% Ag caused the extensive precipitation of the Ω phase, but only mildly suppressed the precipitation of the θ’’ phase, slightly increasing the hardness. The high density of the precipitates of the Ω phase is responsible for the excellent thermal stability under 185℃ exposure for 100 hours and mechanical properties. The Ω precipitates out before the θ’’ phase, and does so more quickly, during the aging process. The continuous grain boundary precipitations and the high Ag concentration alloy that exist high density of the Ω and θ’’ phases caused susceptibility to high stress corrosion cracking. The presence of a wide precipitation-free zone and discontinuous large particles in the grain boundary precipitates caused the T7 alloy to have a low susceptibility to stress corrosion cracking. The alloys tempered to the retrogression and reaging condition cannot reduce susceptibility of the Al-Cu-Mg-Ag alloy to stress corrosion cracking. Decreasing the Cu/Mg ratio of alloy by furthermore addition of Mg leads Ω to become major strengthening phase after ageing treatment. Therefore, the hot extrusion process did not bother the precipitated of Ω phase. However, the 1.1 wt. % Mg contain alloy was too hard and brittle lad to serious cracking occurred following hot extrusion.
關鍵字(中) ★ Al-Cu-Mg-Ag合金
★ 應力腐蝕
★ 微差熱掃瞄
★ 導電度(%IACS)
★ 穿透式電子顯微鏡
關鍵字(英) ★ Stress corrosion cracking
★ Al-Cu-Mg-Ag alloy
★ Electric Conductivity (%IACS)
★ Transmission Electron Microscopy
★ Differential Scanning Calorimetry
論文目次 總 目 錄
――――――――――― 中英文摘要 ―――――――――――
中文摘要 I
英文摘要 III
―――――――――――― 誌 謝 ―――――――――――――
誌 謝 V
――――――――――――― 目錄 ―――――――――――――
總目錄 VI
表目錄 XI
圖目錄 XIII
―――――――― 第一章 研究背景與文獻回顧 ――――――――
1.1 A201合金簡介 1
1.1.1鋁合金簡介 1
(a) 鋁合金發展歷史 1
(b) 鋁合金分類 2
1.1.2 A201鋁合金發展與性質簡介 4
(a) A201鋁合金發展過程 4
(b) A201鋁合金之優、缺點與特色 6
1.2 A201鋁合金基礎理論 9
1.2.1合金凝固特性 9
1.2.2合金熱處理 11
(a) 高溫固溶處理 12
(b) 低溫淬火 13
(c) 時效處理 14
1.2.3合金強化機制與析出序列 16
(a) Al-Cu合金 16
(b) Al-Cu-Mg 合金 17
(c) Al-Cu-Mg-Ag 合金 17
1.2.4 Ω相析出機制 18
1.2.5 Cu/Mg比對於析出影響 22
1.2.6強化相熱穩定性 24
1.2.7合金相變化檢測與分析 25
(a) 儀器原理與技術 25
(b) 數值模擬分析 26
1.2.8合金加工影響 29
1.3 A201鋁合金應力腐蝕 30
1.3.1應力腐蝕簡介 30
1.3.2 A201鋁合金時效處理對應力腐蝕影響 33
1.3.3應力腐蝕的試驗方法 36
1.4 研究背景、動機與目的 37
1.4.1研究背景與動機 37
1.4.2 研究目的 40
―――――――――― 第二章 實驗方法 ――――――――――
2.1 合金準備與鑄造 41
2.1.1 不同銀含量合金之製作(合金A、B、C與D) 41
2.1.2不同銅/鎂比合金之製作 (合金E、F、G與H) 44
2.1.3 合金熱擠製 44
2.2 熱處理 44
2.2.1 標準時效處理 44
2.2.2長期時效處理 45
2.3 微結構觀察與分析 46
2.3.1 光學顯微鏡 46
2.3.2 電子微探儀 46
2.3.3掃描式電子顯微鏡 47
2.3.4導電度量測 47
2.3.5熱差掃瞄分析 47
2.3.6穿透式電子顯微鏡 48
2.4機械性質試驗 49
2.4.1 硬度試驗 49
2.4.2 拉伸試驗 49
2.4.3 慢應變速率拉伸: 應力腐蝕評估 50
―――――――――― 第三章 結果與討論 ――――――――――
3.1銀含量與熱處對析出相、機械性質與應力腐蝕影響 影響 52
3.1.1 微結構分析 53
(a) 光學顯微鏡觀察與電子微探儀分析 53
(b) 導電度量測 59
(c) 熱差掃瞄分析 62
(d) 穿透式電子顯微鏡觀察 72
3.1.2 機械性質試驗 79
(a) 硬度試驗 79
(b) 拉伸試驗 84
3.1.3應力腐蝕試驗 89
3.1.4結論 94
3.2銅/鎂比對熱擠製Al - 4.6%Cu – XMg - 0.6Ag合金熱穩定性影響 96
3.2.1 微結構分析 96
(a) 光學顯微鏡金相觀察 96
(b) 導電度量測 101
(c) 熱差掃瞄分析 104
(d) 穿透式電子顯微鏡觀察 112
3.2.2機械性質試驗 - 拉伸試驗 117
3.2.3熱穩定試驗 120
3.2.4熱擠製影響 124
3.2.5結論 125
――――――――― 第四章 總結論 ―――――――――
總結論 127
――――――― 第五章 未來研究方向 ―――――――
未來研究方向 130
―――――――――― References ――――――――――
References 133
表 目 錄 Table List
Table 1.1 Wrought aluminum alloy series number and their major chemical compositions. 3
Table 1.2 Foundry aluminum alloy series number and their major chemical compositions. 4
Table 1.3 Chemical composition of some selected aluminum alloys. 5
Table 1.4 Tensile properties of some selected aluminum alloys at various temperatures. 7
Table 1.5 Reactions during solidification of A201 casting alloy. 10
Table 1.6 The basic heat treatment designations of aluminum alloys. 12
Table 1.7 The lattice structure and parameter of primary precipitations of A201 alloy. 20
Table 1.8 The electrode potential of solid solution and intermetallic compound of Al-Cu alloys. 35
Table 2.1 Chemical compositions of Al-4.6Cu-0.3Mg-Ag alloys (mass %). 42
Table 3.1 Weight percentage (wt.%) of elements containing of aluminum matrix, net shape and spherical shape phase of as-cast alloys. 55
Table 3.2 The electric conductivity (%IACS) of various silver containing alloys heat treated to several conditions. 60
Table 3.3 The DSC simulation results of heat of precipitation of Ω and θ′ phase for alloys A, B, C and D. 69
Table 3.4 The hardness (HRB) of various silver containing alloys heat treated to several conditions. 80
Table 3.5 The UTS, YS and EL% of the four different Ag-containing alloys tempered to T6, T7 and RRA conditions. 85
Table 3.6 The loss of ductility (%) for the T6, T7 and RRA alloys. 89
Table 3.7 Electrical conductivity (%IACS) of Al-4.6%Cu-Mg-Ag alloys under as-cast, as-quenched, 24-hour natural aging and T7 treatment conditions, and their relative electrical conductivity variations. 101
Table 3.8 The electrical conductivity (%IACS) and relative electrical conductivity variation of Al-4.6%Cu-Mg-Ag alloys which were further exposed in air for times up to 1000hr each at 107℃, 135℃ and 155℃ after T7 tempering. 103
Table 3.9 Heat of precipitation for Ω and θ′ phases under as-quenched and T7 treatment conditions. 105
Table 3.10 Heat of precipitation for the θ′ phases of alloy E, F and G further exposed in air up to 1000hr each at 107℃, 135℃ and 155℃ after T7 treated. 110
Table 3.11 The UTS, YS and EL% of the three different Mg-containing alloys under T7 heat treatment conditions. 118
Table 3.12 Hardness (HRB) of hot-extrusion Al-4.6%Cu-XMg-0.6Ag alloys under as-quenched, one-day natural aging, T7 treatment and exposure in air several times up to 100hr and 1000hr each at 107℃, 135℃ and 155℃ after T7 treatment. 121
圖 目 錄 Figure List
Fig. 1.1 The aluminum end of the aluminum-copper equilibrium diagram. 9
Fig. 1.2 3DAP elemental map of Ag, Mg, Cu and Al in an Al-4.3Cu-0.26Mg-0.7Ag alloy (a) aged for 15 s at temperature of 180℃ after a solution heat treatment, and (b) for Ω phase, an 10 h aged at 180℃. 21
Fig. 1.3 The progress of stress corrosion cracking. 31
Fig. 1.4 The temper verse resistance to stress corrosion cracking of heat treatable aluminum alloys. 35
Fig. 2.1 (a) The metal permanent mold and (b) Casting ingot of 125×100×25 mm3 43
Fig. 2.2 The standard round tension test specimen of ASTM B557M specification. 43
Fig 2.3 The slow strain rate test round bar was immersed in the salt water of 3.5% NaCl solution (pH 6.7) for SCC susceptibility assessment.
Fig. 3.1 The optical microscopic images of (a) Ag-free as-cast alloy A , (b) 0.3 wt.% Ag-containing alloy B, (c) 0.6 wt.% Ag-containing alloy C and (d) 0.9 wt.% Ag-containing alloy D (arrow 1: eutectic CuAl2, 2: S phase). 54
Fig. 3.2 (a) Scanning electron microscopy SEI image of net shape segregation of alloy D, (b) corresponding X-ray map revealing segregation of Cu, (c) SEI image of spherical shape segregation, and corresponding X-ray map of (d) Cu, (e) Mg and (f) Ag. 57
Fig. 3.3 The optical microscopic images of (a) Ag-free as-cast alloy A , (b) 0.3 mass% Ag-containing alloy B, (c) 0.6 mass% Ag-containing alloy C and (d) 0.9 mass% Ag-containing alloy D (arrow : remains of eutectic CuAl2). 58
Fig. 3.4 DSC profiles of as-quenched (after solid solution treatment) alloys A, B, C and D. (The precipitation peak around 213℃ indicated the precipitation of Ω phase, I: precipitation of GP (I), II: precipitation of GP (II), III: dissolution of GP (I) and (II), IV: precipitation of θ´, V: precipitation of θ, and VI: dissolution of θ´and θ). 63
Fig. 3.5 DSC profiles of as-quenched (after solid solution treatment) alloys A, B, C and D. ( I: precipitation of Ω phase; II: precipitation of S' and θ' phases.) 65
Fig. 3.6 Decomposition of the DSC profile of alloy A into four normal distribution functions. 66
Fig. 3.7 Decomposition of the DSC profile of alloy C into six normal distribution functions. 67
Fig. 3.8 The numerically fitted DSC profiles and the values of heat of the precipitation for as-quenched alloys A, B, C and D; (a) precipitation of the Ω phase, and (b) precipitation of the θ' phase. 68
Fig. 3.9 DSC profiles of as-quenched alloy C aging at 185℃ for various periods, indicating that aging slows the precipitation of the Ω and θ' phases. 71
Fig. 3.10 Schematic diffraction patterns for zone axis = , all the expected diffraction spots resulting from regular diffraction are indicated for Al matrix and for the different orientations of possible precipitations such as Ω and θ' phase. 73
Fig. 3.11 The TEM micrograph of (a) diffraction pattern and (b) bright field image for alloy C quenched at 210 ℃ revealing tiny Ω phase; zone axis =〈011〉α. 73
Fig. 3.12 Diffraction patterns showing the various intensity of spots and streaks from the Ω and θ' phases of (a) alloy A, (b) alloy B, (c) alloy C and (d) alloy D under the T7 condition; zone axis =〈011〉α. 75
Fig. 3.13 TEM bright field images showing the Ω and θ' phases (arrows) of (a) alloy A, (b) alloy B, (c) alloy C and (d) alloy D tempered to T7 condition; zone axis = 〈011〉α. 76
Fig. 3.14 TEM bright field images and corresponding diffraction patterns from T6 alloy C: (a) diffraction patterns, (c) bright field image, and from RRA alloy C: (b) diffraction patterns, (d) bright field image; zone axis = 〈011〉α. 78
Fig. 3.15 Hardness versus time for prolonged aging at 185℃of various silver containing alloy A, B, C and D. 83
Fig. 3.16 Scanning Electron Microscopy secondary electron image of the fracture surface of tensile specimens for (a) Alloy A, (b) Alloy B, (c) Alloy C and (d) Alloy D tempered to T6 condition. 86
Fig. 3.17 Scanning Electron Microscopy secondary electron image of the fracture surface of tensile specimens for (a) Alloy A, (b) Alloy B, (c) Alloy C and (d) Alloy D tempered to T7 condition. 87
Fig. 3.18 Scanning Electron Microscopy secondary electron image of the fracture surface of tensile specimens for (a) Alloy A, (b) Alloy B, (c) Alloy C and (d) Alloy D tempered to RRA condition. 88
Fig. 3.19 TEM bright field grain boundary images of (a) Alloy A, (b) Alloy B, (c) Alloy C and (d) Alloy D tempered to T7 condition, showing a PFZ width of around 100 nm and grain boundary precipitations. 91
Fig. 3.20 TEM bright field grain boundary images of (a) T6 and (b) RRA alloy C, showing a PFZ width of approximately 50 nm, and the grain boundary precipitations. 92
Fig. 3.21 Optical micrographs of as-cast alloy (a) A (Cu/Mg = 29), (b) B (Cu/Mg = 19), (c) C (Cu/Mg = 8) and (d) D (Cu/Mg = 4); (arrow 1: eutectic CuAl2, 2: S phase). 97
Fig. 3.22 Optical micrographs of homogenization alloy (a) A (Cu/Mg = 29), (b) B (Cu/Mg = 19), (c) C (Cu/Mg = 8) and (d) D (Cu/Mg = 4); (arrow: remains of eutectic CuAl2). 98
Fig. 3.23 Optical micrographs of hot-extrusion alloy (a) A (Cu/Mg = 29), (b) B (Cu/Mg = 19), (c) C (Cu/Mg = 8) and (d) D (Cu/Mg = 4); (arrow: remains of eutectic CuAl2). 99
Fig. 3.24 Optical micrographs of solid solution treated alloy (a) A (Cu/Mg = 29), (b) B (Cu/Mg = 19), (c) C (Cu/Mg = 8) and (d) D (Cu/Mg = 4). 100
Fig. 3.25 DSC profiles of Al-4.6%Cu-Mg-Ag alloy at as-quenched and T7 condition. 105
Fig. 3.26 DSC profiles of alloy E (0.16wt.%Mg,Cu/Mg = 29) further exposed in air several times up to 1000hr each at (a) 107℃, (b) 135℃ and (c) 155℃ after T7 heat treatment. 107
Fig. 3.27 DSC profiles of alloy F (0.25wt.%Mg,Cu/Mg = 19) further exposed in air several times up to 1000hr each at (a) 107℃, (b) 135℃ and (c) 155℃ after T7 heat treatment. 108
Fig. 3.28 DSC profiles of alloy G (0.56wt.%Mg,Cu/Mg = 8) further exposed in air several times up to 1000hr each at (a) 107℃, (b) 135℃ and (c) 155℃ after T7 heat treatment. 109
Fig.3.29 Diffraction patterns and bright field image for alloy E, zone axis =〈011〉α, (a) T7, and exposed in air several times up to 1000hr each at (b)107℃, (c)135℃ and (d)155℃ after T7 tempering. 113
Fig.3.30 Diffraction patterns and bright field image for alloy F, zone axis =〈011〉α, (a) T7, and exposed in air several times up to 1000hr each at (b)107℃, (c)135℃ and (d)155℃ after T7 tempering. 114
Fig.3.31 Diffraction patterns and bright field image for alloy G, zone axis =〈011〉α , (a) T7, and exposed in air several times up to 1000hr each at (b)107℃, (c)135℃ and (d)155℃ after T7 tempering. 115
Fig. 3.32 SEM SE images of fracture surface of T7-tempering hot-extrusion (a) alloy E (0.56wt.%Mg,Cu/Mg = 8), (b) alloy F (0.56wt.%Mg,Cu/Mg = 8) and (c) alloy G. (0.56wt.%Mg,Cu/Mg = 8). 119
Fig.3.33 Hardness versus exposure time response of alloy E, F and G exposed in air several times up to 1000hr each at 107℃ (△line), 135℃ (○line) and 155℃ (□line) after T7 tempering. The first points at beginning of the curve were the hardness of alloys tempered to T7 condition. 122
參考文獻 1. John E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp.351-359.
2. John E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 320-350.
3. J. R. Davis & Associates: ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.89
4. J. Raffin, US Patent No. 3475166 (Oct. 26, 1969).
5. Kearney: Alloy History, Trialco Aluminum Data Sheet, Table. 1, Chicago Heigth, IL., (1983).
6. J. R. Davis & Associates: ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.89-120.
7. 鄭嘉仁: Mn含量對A201鋁合金晶粒成長之影響, 國立中央大學機械工程研究所碩士論文(1993) pp.4~6
8. J.R. Davis: Aluminum and Aluminum Alloys, ASM Specialty Handbook ASM International, 3rd printing(1994) pp. 708
9. N.J. Davidson: Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0, AFS(1988) pp. 232~247
10. I. J. Polmear and M. J. Couper: Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperatures”, Metallurgical Transactions A, Vol. 19A (1988) pp. 1027~1035
11. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers: After Concorde : Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys, Materials Science and Technology, Vol.15(1999) pp.861-868.
12. V. A. Phillips: High Resolution Electron Microscope Observations on Precipitations in Al-3.0% Cu Alloy, Acta Mater., 23 (1975) 751-767.
13. I. J. Polmear: Effects of small additions of silver on the aging of some aluminum alloys. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Vol.230 (1964) pp. 1331-1339.
14. J. T. Vietz and I. J. Polmear: J. Inst. Metals 94 (1966) 410-417.
15. R. J. Chester and I. J. Polmear: Metallurgy of Light Alloys, Spring Residential Conf. (Inst. of Metallurgists, London, 1983) 3, n20, pp. 75-81.
16. K. M. Knowles and W. M. Stobbs: The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys , Acta Cryst., B44, (1988), pp.207-227
17. B. C. Muddle and I. J. Polmear: The Precipctate Ω Phase in Al-Cu-Mg-Ag Alloys, Acta metal., Vol.37, No.3, (1989), pp.777-789
18. A. Garg, Y. C. Chang, J. M. Howe: Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy, Scripta Metallurgica et Materialia, Vol.24, (1990), pp.677-680
19. R. J. Chester, I. J. Polmear:TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys, Micron, Vol.11, (1980), pp. 311-312
20. A. K. Gupta, P. Gaunt and M. C. Chaturvedi: CRYSTALLOGRAPHY AND MORPHOLOGY OF THE S prime -PHASE PRECIPITATE IN AN Al(CuMg) ALLOY, Philos. Mag. A A55 (1987) 375-387
21. R. B. Mears, R. H. Brown and E. H. Dix, Jr.: A Generalized Theory of the Stress Corrosion of Alloys, in Symposium on Stress-Corrosion Cracking of Metals, ASTM and AIME (1945) pp.323-344
22. S. Abis, P. Menqucci and G. Riontino: Precipitation of metastable phases in a rapidly quenched Al-6wt.%Cu alloy, Mater. Sci. Eng. A Vol. A134 (1991) pp.1175-1178
23. D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys, Chapman & Hall (1981), N. Y. Van Nostrand Reinhold, pp.55-56
24. J. E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM, Metals Park, Ohio(1984) pp.264-280
25. L. Bäckerud, G. Chai and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2 Fundry Alloys, AFS, Skanaluminium, Sweden, 1990, p.45-53
26. D. A. Porter an: K. E. Easterling: Phase Transformation in Metals and Alloys, Chapman & Hall, 1981, p209-222
27. A. K. Mukhopadhyay: On the Nature of the Second Phase Particles Present in an As-CAST Al-Cu-Mg-Ag Alloy, Scripta Materialia, Vol. 41(1999) pp. 667-672
28. A. K. Mukhopadhyay: Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg(-Li) Alloys Containing Ag, Metallurgical and Materials Transactions A, Vol. 30A(1999) pp.1693-1704
29. 劉國雄、林樹均、李勝隆、鄭晃中、葉均蔚編著:工程材料科學,全華圖書,pp. 328-332.
30. 劉國雄、葉均蔚:高強力鋁合金之熱處理-析出硬化,金屬熱處理, 14期(1985), pp. 1-28.
31. D. Apelian, S. Shivkumar and G. Sigworth: Fundamental aspects of heat treatment of cast Al-Si-Mg alloys, AFS Trans., Vol. 89-137, pp. 727-743.
32. J. Gauthier, P. R. Louchez and F. H. Samuel: Heat treatment of 319.2 aluminum automotive alloy, part 1, solution heat treatment, AFS Int. Cast Metals, Vol. 8, (1995), pp. 91-106.
33. L. A. Naraynan, F. H. Samuel and J. E. Gruzleski: Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment, Metall. Mater. Trans. A, Vol. 26A, (1995), pp. 2161-2174.
34. L. E. Marsh and G. Reinenann: AFS Trans., Vol. 87, (1979), pp. 413-422.
35. K. Rajan, W. Wallace and J. C. Beddoes: Microstructure Study of a High Strength Stress-Corrosion Resistant 7075 Aluminum Alloy, J. Mater. Sci., Vol. 17 (1982) pp.2817-2848
36. M. U. Islam and W. Wallace: Retrogression and Reaging Response of 7475 Aluminum Alloy, Met. Technol. Vol.10 (1983) pp.386-392
37. 蔡騰群: 超塑性7475鋁鋅鎂合金應力腐蝕性質研究, 國立台灣大學材料科學與工程研究所 (1996) pp.1-5
38. ASTM B597-83, Annual Book of ASTM Standards, Vol.02.02, (1984)
39. John E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio (1984) pp.143-144.
40. S. P. Ringer, T. Sakurai and I. J. Polmear: Origins of Hardening in Aged Al-Cu-Mg-(Ag) Alloys, Acta Mater. Vol.45 (1997) pp.3731-3744
41. S. P. Ringer, W. Yeung, B. C. Muddle and I. J. Polmear: Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures , Acta metal. mater., Vol.42, No.5, (1994), pp.1715-1725
42. J. A. Taylor, B. A. Parker and I. J. Polmear: Precipitation in Al-Cu-Mg-Ag Casting Alloy, Metals Sci., Vol.12 (1978) pp. 478-482
43. J. H. Auld: Structure of Metastable Precipitate in Some Al-Cu-Mg-Ag Alloys, Mater. Sci. Technol. Vol.2 (1986) pp.784-787
44. K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai: Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys, Acta metal. mater., Vol.41, No.3 (1993) pp.829-838
45. K. Hono, T. Sakurai, I. J. Polmear: Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy, Scripta Metallurgica et Materialia, Vol.30, No.6 (1994) pp.695-700
46. A. K. Mukhopadhyay: Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Addition of Ag, Materials Transactions, JIM, Vol.38, No.5 (1997) pp.478-482
47. L. Reich, M. Murayama, K. Hono: Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy-A Three-Dimension Atom Probe Study , Acta mater., Vol.46, No.17 (1998) pp.6053-6052
48. K. T. Moore, J. M. Howe and D. R. Veblen: High-resolution and Energy-filtered TEM Imaging of Ag Segregation to Planar Precipitate-matrix Interfaces in an Al-Cu-Mg-Ag Alloy, Philosophical Mag. B, Vol.82, No.1 (2002) pp.13-33
49. K. Hono: Atom Probe Microanalysis and Nanoscale Microstructures in Metallic Materials, Acta Mater. Vol.47, No.11 (1999) pp.3127-3145
50. K. Hono, M. Murayama and L. Reich: Proc. Int. Conference: Solid→Solid phase Transformation ‘99, Kyoto, 23-28 May (1999)
51. L. M. Wang, H. M. Flower and T. C. Lindley: Precipitation of The Ω Phase in 2024 and 2014 Aluminum Alloys, Scripta Mater. Vol.41, No.4 (1999) pp.391-396
52. S. P. Ringer, K. Hono , I. J. Polmear and T. Sakurai: Nucleation of Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios , Acta Mater., Vol.44, No.5(1996) pp.1883-1898
53. O. Beffort, C. Solenthaler, P. J. Uggowitzer and M. O. Speidel: High Toughness and High Strength Spray-Deposited AlCuMgAg-Base Alloys for Use at Moderately Elevated Temperatures, Mater. Sci. Eng., A191 (1995) pp.121-134
54. Qiong Li* and R. N. Shenoy: DSC and TEM characterization of thermal stability of an Al-Cu-Mg-Ag Alloy, Mater. Sci., Vol.32(1997)pp.3401-3406
55. L. Bäckerud, G. Chai and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2 Fundry Alloys, AFS, Skanaluminium, Sweden, 1990, p.41-43
56. 歐炳隆: 鋁合金的製造技術與原理, 國立中央大學機械所授課教材.第五章pp.1
57. 汪建民: 材料分析, 中國材料科學學會, 新竹(1998) pp.560-563
58. M. Takeda , Y. Maeda , A. Yoshida , K. Yabuta , S. Konuma , and T. Endo : Discontinuity of G.P.(I) zone and θ′-phase in an Al-Cu allo , Scripta Materialia, Vol.41 , No.6 (1999) pp. 643 – 649.
59. S. Abis, P. Mengucci and G. Riontino: A study of the high-temperature aging of Al-Cu-Mg-Ag alloy 201, Philosophical Magazine B, vol. 67 (1993) pp.465-484
60. L. Del Castillo, and E. J. Lavernia: Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloy, Metall. Mate. Trans., Vol. 31A (2000) pp. 2287 – 2298.
61. G. Biroli, G. Caglioti, L. Martini and G. Riontino: Precipitation Kinetic of AA4032 and AA6082: A Comparison Base on DSC and TEM, Scripta Mater. 39 (1998) 197-203.
62. C. J. Tseng, S. L. Lee, T. F. Wu and J. C. Lin: Effects of Fe content on microstructure and mechanical properties of A206 alloy, Mater. Trans. JIM., Vol.41 (2000) 708-713.
63. S. P. Ringer, B. C. Muddle and I. J. Polmear: Effects of Cold Work on Precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) Alloys, Metall. Mate. Trans. A, Vol.26A (1995) pp.1659-1671
64. R. K. Wyss and R. E. Sanders, Jr.: Microstructure-Property Relationship in a 2XXX Aluminum Alloy with Mg Addition, Metall. Trans. A, Vol.19A(1988) pp.2523-2530
65. D. A. Jones: Principles and Prevention of Corrosion 2nd ed., Prentice Hall International, Inc. (1997) pp.235-244
66. T. Sydbergr and N. G. Vannerberg: The Influence of the Relative Humidity and Corrosion Products on the Adsorption of Sulfur Dioxide on Metal Surfaces, Corr. Sci., Vol.12 (1972) pp.775-784
67. 柯賢文:腐蝕及其防治,全華科技圖書股份有限公司(1995) pp.167-181
68. B. F. Brown: Stress Corrosion Cracking of High Strength Steels, The Theory of Stress Corrosion Cracking, Edit by J. C. Scully, NATO, Brussels (1971) pp.186-204
69. A. J. Sedriks, J. A. S. Green, D. L. Novak: On the Chemistry of the Solution at tips of Stress Corrosion Cracks in Al Alloys, Corrosion-Nace, Vol.27, No.5 (1971) pp.198-202
70. R. Braun: Evaluation of the Stress Corrosion Cracking Behavior of Damage-Tolerate Al-Li Sheet Using the Slow Strain Rate Testing Technique, Mater. Sci. Eng., Vol.A190 (1995) pp.143-154
71. S. Ohsaki and T. Takahashi: Effect of Heat Treatment on Improving the Stress-Corrosion Cracking Resistance of 475 Alloy, Japan Institute of Light Metals, Vol.35 (1985) pp.261-268
72. T. Kawabata and O. Izumi: On the intergranular Fracture Mechanism Due to Ledge Formation in An Al-6.0%Zn-2.5%Mg Alloy, Mate. Sci., Vol.14 (1979) pp.1071-1079
73. E. Hornbogen and K. H. zum Gah: Distribution of Plastic Strain in Alloys Containing Small Particles, Metallography, Vol.8 (1975) pp.181-202
74. A. J. De Ardo, Jr and R. D. Townsend: The Effect of Microstructure on the Stress-Corrosion Susceptiblity of a high Purity Al-Zn-Mg Alloy in a NaCl Solution, Metallurgical Transactions, Vol.1, (1970), pp.2573-2581
75. M. F. Ashby and R. A. Verrall: Diffusion-Accommodated Flow and Superplasticity, Acta Metallurgica, Vol.21 (1973) pp.149-163
76. N. Ridley: Superplastic Microstructures, Mater. Sci. Tech., Vol. 6 (1990) pp.1145-1156
77. T. D. Burleigh: The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys, Corrosion, Vol.47 (1991) pp.89-98
78. M. S. Misra, K. J. Oswalt: Corrosion Behavior of Al-Cu-Mg-Ag(201) Alloy, Metals Engineering Quarterly, Vol.16 (1976) pp.39-44
79. M. O. Speidel, M. V. Hyatt: Advances in Corrosion Science and Technology, Vol.2 (1972) pp.224-243
80. R. N. Parkins, F. Mazza, J. J. Royuela and J. C. Scully: Stress Corrosion Test Methods, Br. Corros. J., Vol. 7 (1972) pp.154-167
81. D. A. Jones: Principles and Prevention of Corrosion 2nd ed., Prentice Hall International, Inc. (1997) pp.263-270
82. D. B. Williams and C. B. Carter: Transmission Electron Microscopy, A Textbook for Materials Science, Plenum Pres, New York (1996) pp.9-11
83. K. Osamura, N. Otsuka and Y. Murakami: RESISTIVITY MAXIMUM DURING GUINIER-PRESTON ZONE FORMATION IN AN Al-4 wt% Cu ALLOY, Philos. Mag. B B45 (1982) pp.583-599.
84. G. Riontino and S. Abis: Scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy, Philos. Mag. B B64 (1991) pp.447-461.
85. D. A. Porter an: K. E. Easterling: Phase Transformation in Metals and Alloys, Chapman & Hall, 1981, p55-56
86. D. A. Jones: Principles and Prevention of Corrosion, 2nd Ed., Prentice Hall, Upper Saddle River, NJ (1996) pp.43-45
87. R. H. Jones: Stress-Corrosion Cracking, ASM International, Materials Park, Ohio(1992) pp.233-249.
88. D. A. Jones: Principles and Prevention of Corrosion 2nd ed., Prentice Hall International, Inc.(1997) pp.168-235.
89. A. Zieliński, J. Chrzanowski, M.Warmuzek, A. Gazda and E. Jezierska: Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al-Zn-Mg alloy, Mater. and Corr., 55, No.2 (2004) pp.77-87
90. A. F. Oliveira, Jr., M. C. de Barros, K. R. Cardoso, D. N. Travessa: The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminium Alloys, Mater. Sci. Eng. A 379 (2004) pp.321-326.
91. T. C. Tasi and T. H. Chuang: Role of Grain Size on the Stress Corrosion Cracking of 7475 Aluminium Alloys, Mater. Sci. Eng. A 225 (1997) pp. 135-144.
92. 曾建榮: 鐵與錳含量對A206鋁合金機械性質的影響,國立中央大學博士論文(2003)
93. R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, PWS Publishing Co. Boston, MA (1991) pp.161-162
94. 郭永聖:高強度A201鋁合金冒口補充行為之研究,國立成功大學礦冶系研究所博士論文(1990)
95. 李勝隆: 高強度鑄造用鋁合金性質研究,行政院國家科學委員會應用科技學術合作研究計畫,92WFA0700672 (2004)
96. J. F. Lancaster, “ Metallurgy of Welding fifth ed., Chapman & Hall, (1993), pp.298-314
97. B. Z. Li, R. Y. Wang, H. F. Yan, D. C. Yang and Z. Q. Zhuo: Literature Review on the Use of Rare Earths in Non Ferrous Cast Alloys, CIATF COMMISSION REPORT; Ind. Found. J. vol.38(1992) pp.19-33.
98. K. Nogita, S. D. McDonald and A. K. Dahle: Eutectic Modification of Al-Si alloys with Rare Earth Metals” Mater Trans.JIM., vol. 45 (2004) pp.323-326.
99. S. Lathabai and P. G. Lloyd: The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al–Mg alloy, Acta Mater., Vol. 50 (2002) pp.4275-4292.
100. A. F. Norman, P. B. Prangnell, and R. S. McEwen: The Solidification Behavior of Dilute Aluminum-Scandium Alloys, Acta Mater., Vol. 46 (1998) pp. 5715-5732.
101. K. B. Hyde, A. F. Norman and P. B. Prangnell: The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys, Acta Mater., Vol. 49 (2001) pp.1327-1337.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明