博碩士論文 89343015 詳細資訊


姓名 楊啟明(Chi-ming Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波飛行時間創新的量測方法 --使用不同頻率波峰序列
(An Innovative Ultrasonic Time-of-Flight Measurement Method Using Peak Time Sequences of Different Frequencies )
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本文為改良基於過門檻時間的Time of Flight(T-O-F)量測方式。這個方法綜合T-O-F以及相位差量測之優點,同時具備長距離量測以及高精度量測之優點,本文有以下數點創新:1.使用多次跨門檻時點資料整理出到達時間資訊。2.用不同頻率之超音波之多次跨門檻時間,推算峰谷到達時間差,其以時間差之變動反推第一波到達時間。
本文同時提供用來實現雙頻率超音波峰谷到達時間測量的具體電路介紹。為實測用於量測距離的創新雙頻超音波測矩電路,我們也設置完成PC-BASED測試平台,此一測試平台在文中我們會一併介紹。運用這一個測試平台,我們完成了最少需求發射波數研究實驗、 可用穩態接收波段研究實驗、最小雙頻間隔時間研究實驗、間矩與介質微變異影響與反制研究實驗、以及最終的雙頻超音波測矩實驗。實驗的結果不但驗證了雙頻峰谷到達時差量測距離可行,同時在1450mm的測試距離內,使用波長8.6mm的超音波,實驗的標準差也達到0.097mm精度。由實驗結果,我們建立了一個使用雙頻超音波來測距條件參數表格,希望能有益於有興趣使用這種方法量測矩離的朋友。本研究所提出之測矩電路,僅用到微控制器,數位邏輯電路以及簡單功率放大電子元件,無需ADC等成本高之電路元件,不僅成本上具有優勢,且很容易IC化。
摘要(英) This paper proposes an innovative distance measurement method based on the time of flight (TOF) of ultrasound. By introducing received ultrasonic wave peak time sequences (PTS) of two slightly different frequencies, the relative distance can be accurately identified with resolution much better than a wavelength. The new PTS distance measurement is achieved in two steps. Firstly, a peak time sequence is built for received ultrasound signal of each frequency according to the arrival time of the wave peaks by calculating the mean value of the adjacent crossover time. Secondly, the arrival time of the wave front is rebuilt by estimating the common initiation time of the peak time sequences for the received waves of slightly different frequencies.
A mathematical model is derived to describe the signal reception, from which the TOF estimation algorithm was derived. A simulation model describing the characteristics of the ultrasonic transducer and the ultrasonic wave propagation physics is developed to verify the new algorithm.
An experimental system was implemented to confirm the feasibility. A PC-based test bench was built to test the characteristics. The characteristics of the transient behavior of the PTS were studied to determine the implementation parameters. Obtaining the PTS by averaging repeated tests was found to be effective in enhancing the precision, as well as the robustness, of the algorithm. In a TOF measurement over the distance of 145cm , a STD of 0.0113 of a period was achieved by a nominal driving wave period of 25.6us (39KHz) and frequency difference factor of 0.0048. When applied to distance measurement, the worst STD of 0.097mm was achieved with a relative distance ranging up to 1450mm, given the nominal driving wavelength of 8.6mm. This new dual frequencies PTS based TOF measurement system can be economically embedded in a micro controller together with floating point gate array (FPGA), and some simple transistors suitable for positioning mobile units indoors or in small open field environments.
關鍵字(中) ★ 超音波
★ 距離量測
★ 非接觸量測
關鍵字(英) ★ Acoustic distance measurement
★ Acoustic measurements
★ Acoustic applications
★ Acoustics
★ Acoustic devices
論文目次 論 文 摘 要 I
ABSTRACT II
謝 誌 IV
目 錄 V
圖 目 VII
表 目 X
第一章 緒論 1
1.1 前言 1
1.2 現有超音波測距法回顧 2
1.3 本文之貢獻 5
1.4 本文的架構 6
第二章 超音波測距系統的特性分析 8
2.1 超音波系統之動態模型 8
2.2 超音波轉能器之特性 9
2.3 超音波轉能器之模型推導 12
2.4 飛行時間的模擬 14
2.5 超音波的傳遞與能量衰減 15
2.6 放大增益 16
2.7 比較器門檻值 17
2.8 系統模型的模擬輸出比較 17
2.9 超音波傳遞系統的問題 18
第三章 雙頻超音波演算法推導與模擬 21
3.1 波峰到達時間的數學模型 21
3.2 基於波峰波谷資訊的演算法推算 27
3.3 模擬結果與雜訊干擾的影響 28
3.3.1 理想狀態下的測試 29
3.3.2 雜訊對系統之影響 30
3.4 模擬結果討論 35
第四章 硬體測試平台的規劃 36
4.1 雙頻超音波測距系統 36
4.1.1主控次系統 37
4.1.2 受控次系統 38
4.2 硬體次系統介紹 38
4.2.1 超音波叢波產生器 39
4.2.2 超音波波緣到達時間記錄器 41
4.3 實驗測試平台架構 42
第五章 實驗規劃與測試結果 44
5.1 瞬時頻率變化實驗 44
5.2飽和穩定時區實驗 47
5.3量測環境變異實驗 51
5.4叢波間隔影響實驗 55
5.5雙頻法距離量測實驗 61
第六章 結論與未來發展 65
參 考 文 獻 67
附錄:學經歷及著作列表 70
參考文獻 [1] C. F. Huang, M. S. Young, and Y. C. Lin, “Multiple-Frequency Continuous Wave Ultrasonic for Accuracy Distance Measurement”, Review of Scientific Instruments, Volume 70, Number 2, February 1999
[2] M. Yang, S. L. Hill, B. Bury, and J. O. Gray, “A Multifrequency AM-based Ultrasonic System for Accuracy Distance Measurement”, IEEE Transactions on Instrumentation and Measurement, VOL. 43, NO. 6, December 1994
[3] Lawrence E. Kinsler, and Austin R. Fery, “Fundamentals Of Acoustics”, American Journal of Physics, Vol. 19, NO. 4, pp. 254-255, April 1951.
[4] Elmer, H., Schweinzer, H., “High resolution ultrasonic distance measurement in air using coded signals”, Instrumentation and Measurement Technology Conference, 2002. IMTC/2002. Proceedings of the 19th IEEE, Vol. 2, pp. 1565–1570, Aug. 2002.
[5] Francis E. Gueuning, Mihai Varlan, Christian E. Eug`ene, and Pascal Dupuis, "Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods", IEEE Transaction on Instrumentation and Measurement, Vol.46 No.6, pp. 1236-1240, Dec. 1997.
[6] Angrisani, L., Schiano Lo Moriello, R., “Estimating ultrasonic time-of-flight through quadrature demodulation” , IEEE Transaction on Instrumentation and Measurement, Vol. 55, NO. 1, pp. 54–62, Feb. 2006.
[7] Leopoldo Angrisani, Aldo Baccigalupi, and Rosario Schiano Lo Moriello, “Ultrasonic Time-of-Flight Estimation Through Unscented Kalman Filter”, IEEE Transaction on Instrumentation and Measurement, Vol. 55, NO. 4, pp. 1077- 1084, Aug. 2006.
[8] Leopoldo Angrisani, Aldo Baccigalupi, and Rosario Schiano Lo Moriello, “A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation”, IEEE Transaction on Instrumentation and Measurement, Vol. 55, NO. 2, pp. 442 – 448, Apr. 2006.
[9] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors”, IEEE Transactions on Instrumentation and Measurement, VOL. 41, NO. 1, February 1992
[10] M. Parrila, J. J. Anaya, and C. Fritsch, “Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements”, IEEE Transactions on Instrumentation and Measurement, VOL.40, NO.4, August 1991
[11] K. Nakahira, D. Kodama, S. Morita, and S. Okuma, “Distance Measurement by an Ultrasonic System Based on a Digital Polarity Correlator”, IEEE Transactions on Instrumentation and Measurement, VOL. 50, NO. 6, December 2001
[12] G. Andria, F. Attivissimo, and N. Giaquinto, “Digital signal processing techniques for accurate ultrasonic sensor measurement”, Measurement, Vol. 30, September 2001, pp105-114
[13] D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing,” IEEE Transactions on Instrumentation and Measurement, Vol.43, Iss.4, Aug 1994, Pages:578-582
[14] C. Cai and Paul P. L. Regtien, “Accurate Distance time-of-flight Measurement using self-interference”, IEEE Transactions on Instrumentation and Measurement, VOL. 42, NO. 6, December 1993
[15]Kenji Nakahira, Tetsuji Kodama, Shin Morita, and Shigeru Okuma, "Distance measurement by an ultrasonic system based on a digital polarity correlator", IEEE Transaction on Instrumentation and Measurement, Vol.50, No.6, pp. 1748-1752, Dec. 2001.
[16]C. F. Huang, M. S. Young, and Y. C. Li, "Multiple-frequency continuous wave ultrasonic system for accurate distance measurement", American Institute of Physics, Review of Scientific Instruments, Vol. 70, No. 2, pp. 1452-1458, Feb. 1999.
[17] The specification of 400ST/R120 ultrasonic transducer by Prowave can be found on the WWW at http://www.prowave.com.tw/pdf/T400S12.PDF
[18]A. P. Cracknell, “Ultrasonics.” London: Wykeham, 1982, chap.3
[19]“Choosing an Ultrasonic Sensor for Proximity or Distance Measurement,” 網址:http://www.sensorsmag.com/articles/0299/acou0299/main.shtml
指導教授 江士標(Shyh-biau Jiang) 審核日期 2010-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡