博碩士論文 89521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.153.135.60
姓名 劉文雄(Wen-Hsiung Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性
(Optoelectronic Characteristics of SiO2-Isolated Amorphous TFLEDs on c-Si Wafer)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究
★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討的主題是在n-型矽晶圓上研製具有隔離氧化層的非晶碳化矽氫(a-SiC:H)、非晶氮化矽氫(a-SiN:H) 和電壓調色的非晶碳(氮)化矽氫[a-SiC(N):H]等n-i-p薄膜發光二極體,並量測及分析其光電特性。這些元件在n層及p層區域均分別採用組成摻雜梯度能隙(composition-dopant-graded gap)結構,以增加載子注入效率,提升元件的發光亮度、降低元件的操作電壓。在元件製程方面,利用在陰極附加不銹鋼濾網的電漿助長化學氣相沈積(PECVD)系統,以減少薄膜在沈積時遭電漿轟擊所造成的傷害,故可獲得品質較佳的非晶薄膜,並以最佳化退火製程,改善薄膜發光二極體的光電特性。所完成的非晶碳化矽氫(a-SiC:H) n-i-p 薄膜發光二極體的元件發光亮度在電流密度等於600 mA/cm2時為8100 cd/m2,發光臨限電壓值為19.1 V,電激發光(EL)頻譜峰值波長為600 nm,。而另一非晶氮化矽氫(a-SiN:H) n-i-p薄膜發光二極體的電激發光(EL)頻譜峰值波長為528 nm,發光臨限電壓值為15.4 V,,元件發光亮度在電流密度等於300 mA/cm2時為370 cd/m2。而電壓調色的非晶碳(氮)化矽氫[a-SiC(N):H] 薄膜發光二極體,在不同的偏壓下,電激發光(EL)頻譜峰值波長會在565 nm與670 nm間移動。
摘要(英) In order to investigate the feasibility of fabricating Si-based visible light-emitting diodes (LEDs) with common well-developed silicon processing technology, the SiO2-isolated n [phosphorous-doped hydrogenated amorphous silicon (n-a-Si:H) ] - i [intrinsic hydrogenated amorphous silicon-carbon (i-a-SiC:H) or intrinsic hydrogenated amorphous silicon-nitride (i-a-SiN:H)] - p [boron-doped hydrogenated amorphous silicon (p-a-Si:H)] thin-film LEDs (TFLEDs) were fabricated on n-type c-Si wafers. These SiO2-isolated TFLEDs would emit red-orange, green-white light and even light with voltage-tunable color.
The red-orange TFLED revealed a highest brightness of 8100 cd/m2 at an injection current density of 600 mA/cm2, an electroluminescence (EL) peak wavelength at 600 nm, and an EL threshold voltage = 19.1 V. The green-white TFLED had a brightness of 370 cd/m2 at an injection current density of 300 mA/cm2, an EL peak wavelength at 528 nm, and an EL threshold voltage = 15.4 V. The voltage-tunable TFLEDs had the EL peak wavelength ranged from 565 nm to 670 nm at different applied voltages.
The experimental results demonstrated the feasibility of developing Si-based visible light-emitting devices on c-Si substrate.
關鍵字(中) ★ 薄膜發光二極體
★ 非晶質
★ 矽晶圓
★ 氧化隔離層
關鍵字(英) ★ TFLEDs
★ c-Si
★ SiO2-Isolated
★ Amorphous
★ a-SiC:H
★ a-SiN:H
論文目次 Abstract.....................................................Ⅲ
Table Captions...............................................Ⅳ
Figure Captions..............................................Ⅴ
Chapter 1 INTRODUTION.......................................1
Chapter 2 EXPERIMENTAL PROCEDURES...........................5
2.1 Preparations of Various Thin-Films.......................5
2.1.1 Deposition System....................................5
2.1.2 Film Depositions.....................................7
2.2 Device Synopsis.........................................13
2.3 Fabrications of SiO2-Isolated TFLEDs on c-Si............17
2.4 Measurement Techniques..................................28
2.4.1 Optical Bandgap of Amorphous film...................28
2.4.2 EL Intensity and Brightness.........................28
2.4.3 EL Spectrum.........................................28
Chapter 3 RESULTS AND DISCUSSIONS..........................33
3.1 Red-Orange TFLED (Device 1)..........................33
3.2 Green-(Blue)-White TFLED (Device 2)..................33
3.3 Voltage-Tunable TFLEDs (Devices 3 and 4).............34
3.4 Characteristics of the Finished TFLEDs...............38
3.4.1 Current-Conduction Mechanism.....................38
3.4.1.1 Ideality Factor..............................38
3.4.1.2 Low Electric-Field Region....................38
3.4.1.3 High Electric-Field Region...................40
3.4.2 B-V Characteristics..............................43
3.5 EL Spectra...........................................43
3.6 Effects of Annealing....................................55
Chapter 4 CONCLUSIONS......................................68
REFERENCES..................................................70
參考文獻 [1] W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon,” Solid State Commun. 17, pp.1193, 1975
[2] D. E. Carlson and C. R. Wronski: Appl. Phys. Lett. 28, pp.671, 1976
[3] N. F. Mott and E. A. Davis, “ Electronic Processes in Non-Crystalline Materials,” 2nd ed., Chap. 6, Oxford University Press, pp. 288, 1979.
[4] J. I. Pankove and D. E. Carlson, “ Electroluminescence in Amorphouse Silicon,” Appl. Phys. Lett., Vol.29, pp.620, 1976.
[5] R. A. Street, C. Tsang, and J. C. Knight, Proceedings of International Conference Phys. Semiconductors, Edingburgh, pp. 1139, 1978.
[6] T. S. Nashashibi, I. G. Austin, T. M. Searle, R. A. Gibson, W. E. Spear and P. G. LeComber, “Electroluminescence in Amorphous Silicon p-i-n Junction,” Phil. Mag., Vol. B45, pp.553, 1982.
[7] K. S. Lim, M. Konagai, and K. Takahashi, “Observation of Electroluminescence from Amorphous Silicon Solar Cells at Room Temperature,” Jpn. J. Appl. Phys., Vol.21, pp. L473, 1982.
[8] A. J. Rhodes, P. K. Bhat, I. G. Austin, T. M. Searle, and R. A. Gibson, J. Non-Cryst. Solids., Vol.59 and 60, pp.365, 1983.
[9] D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “ Visble-Light Injection-Electroluminescent a-SiC:H p-i-n Diode,” Jpn. J. Appl. Phys., Vol. 24, No. 10, pp. L806-L808, 1985.
[10] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa “ Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986.
[11] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “ Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
[12] S. M. Paasche, T. Toyama, H. Okamoto, and Y. Hamakawa, “Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amorphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp. 2895, 1989.
[13] W. Boonkosuum, D. Kruangam, and S. Panykeow, “Visible-Light Amorphous Silicon-Nitride Thin-Film Light Emitting Diode” Mat. Res. Soc. Symp. Proc. Vol. 297. P1005-1010, (1993)
[14] D. C. Chung, ”Optoelectronic Characteristics of Green-Blue-White a-SiN:H-based p-i-n Thin-Film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
[15] N. Koshida, and H. Koyama, ”Visible Electroluminescence from Porous Silicon”, Appl. Phis. Lett., 60, (3), pp347-440, 1992.
[16] D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, “Photoluminescence from Gas-suspended SiOx Nanoparticles Synthesized by Laser Ablation,” Appl. Phis. Lett., 72, (4), pp.438-440, 1998.
[17] M. Matsuoka, and S. Tohno, “Electroluminescence of Erbium-Doped Silicon Films as Grown by Ion Beam Epitaxy,” Appl. Phis. Lett.., 71, (1), pp.96-98, 1999.
[18] M. Garter, J. Scofield, R. Birhahn, and A. J. Steckl, “Visible and Infrared Rare-Earth-Activated Eletroluminescence from Indium Tin Oxide SchottkyDdiodes to GaN:Er on Si,” Appl. Phis Lett., 74, (2), pp.182-184,1999.
[19] C. W. Liu, M. H. Chen, M. L. Chen, I. C. Lin, and C. F. Lin, “Room-temperature Eletroluminescence from Electron-Hole Plasmas in the Metal-Oxide-Silicon Tunneling Diodes,” Appl. Phis. Lett., 76, (12), pp.1516-1518, 2000.
[20] S. M. Passche, T. Toyama, H. Okamoto, and Y. Hamakawa, ”Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amouphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp.2895, 1989.
[21] J. Y. Chen, “ The Effect of Graded-Gap and Barrier Layer Structure on the Electroluminescence Properties of a-SiC:H p-i-n Thin-Film Light Emitting Diode,” M. S. Thesis, NCU, Taiwan, R.O.C., 1992.
[22] J. K. Chen, “ Characteristics of a-SiC:H Double Composition-Dopant-Graded Gap p-i-n Thin-Film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 1995.
[23] J. C. Wang, “ Improving the Characteristics of Amorphous Metal-Semiconductor-Metal Photodetectors (MSM-PDs)” M. S. Thesis, NCU, Taiwan, R.O.C., 1996.
[24] Yen-Ann Chen, Chen-Fu Chiou, Wen-Chin Tsay, Li-Hong Laih, Jyh-Wong Hong, and Chun-Yen Chaug ” Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. on Electronic Devices, Vol.44, No.9, pp.1360-1366 , 1997
[25] R. A. Street, J. C. Knights, and D. K. Biegelsen, “Luminescence Studies of Plasma-Deposited Hydrogenated Silicon,” Phys. Rev. B, Vol. 18, No. 4, pp. 1880-1891, 1978.
[26] Yen-Ann Chen, Ming-Lung Hsu, Li-Hong Laih, Jyh-Wong Hong, and Chun-Yen Chaug,“ Characteristics of SiC-based Thin-Film LED Fabricated Using Plasma-Enhanced CVD System with Stainless Steel Mesh,” Electronics Letters 22nd, Vol. 35, No. 15,1999.
[27] J. W. Lee, S. H. Hur, and K. S. Lim,” Hydrogen Passivation Effects on Performance of Visible Thin-Film Light-Emitting Diodes (TFLEDs),” IEDM, 825-828, 1995.
[28] M. S. Haque, H. A. Naseem, W. D. Brown, and S. S. Ang, “ Hydrogenated Amorphous Silicon/Aluminum Interaction at Low Temperatures, “ Mat. Res. Soc. Symp. Proc., Vol. 258, pp. 1037-1042, 1992.
[29] J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
[30] D. Kruangam, “Amorphous and Microcrystalline Semiconductor Devices : Optoelectronic Devices,” (Jerzy Kanicki, ed.), chap. 6, Artech House, 1991.
[31] J. W. Hong, N. F. Shin, T. S. Jen, S. L. Ning and C. Y. Chang, ”Graded-gap a-SiC:H p-i-n Thin-Film Light Emitting Diodes,” IEEE Electron Device Lett., Vol. 13, No. 7, pp. 375-377, 1992.
[32] M. A. Lampert and P. Mark, “ Current Injection in Solids,” Chap. 2, 4, 5, Academic Press, 1970.
[33] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa,” Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp. 957, 1988.
[34] C. P. Huang, “Optoeletronic Characteristics of A-SiH:H-Based TFLEDs and Organic LEDs,” M. S. Thesis, NCU, Taiwan, R.O.C., 2000.
[35] D. Kruangam, T. Toyama, Y. Hattori, M. Deguchi, H. Okamoto and Y. Hamakawa, “ Improvement of Carrier Injection Efficiency in a-SiC:H p-i-n LED Using Highly-Conductive Wide-Gap p, n type a-SiC prepared by ECR CVD,” J. Non-Cryst. Solids, Vols. 97&98, pp. 2 93-296, 1987.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明