博碩士論文 89521036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.128.203.143
姓名 張勻禎(Yun-Chen Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
(Dark-Current Characteristics of the Si-based MSM-PD with Amorphous Heterojunction and Trench Electrodes)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究
★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主要目的是探討具非晶接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流基本機制,並且藉以降低元件之暗電流而提升其訊雜比。利用梯度高能隙非晶合成物結構及附加不鏽鋼濾網的電漿助長化學氣相沈積系統沈積非晶薄膜等技巧可降低元件的暗電流,且效果良好。非晶位障層對金屬-半導體-金屬光偵測器而言,不僅可以降低暗電流,更可提升暗電流對溫度的穩定性。
摘要(英) In this thesis, dark-current characteristics of the Si-based MSM-PD with amorphous-crystalline heterojunction and trench electrodes were studied. The current transport mechanisms across the amorphous-crystalline heterojunction and the metal-semiconductor Schottky barrier had been discussed, and the obtained concepts, e.g. using materials having a higher activation energy and a higher Schottky barrier, could be helpful to suppress the device dark current. Although using trench electrodes might result in a little higher device dark current, but the benefits were the improvements of the device knee voltage, responsivity, and response speed. However, the photo-to-dark current ratio is an important issue for a MSM-PD. So the device responsivity should be considered when its dark-current was suppressed, and accordingly, a graded high bandgap amorphous alloy could be employed for the amorphous-crystalline heterojunction to enhance device photo-to-dark current ratio. Plasma damages on the crystalline silicon (c-Si) substrate, caused by ion bombardments during deposition of amorphous layer, could increase the dark-current magnitude of an a-Si:H/c-Si MSM-PD, because the induced defect states on c-Si substrate served as generation centers in the reverse-biased junction. The plasma damages could be reduced significantly by using a deposition technique i.e. attaching a s.s. reticulate mesh to the upper (cathode) electrode of the PECVD (plasma-enhanced chemical vapor deposition) system during deposition of the i-a-Si:H layer.
關鍵字(中) ★ 非晶矽
★ 金屬-半導體-金屬光偵測器
★ 暗電流
關鍵字(英) ★ amorphous silicon
★ metal-semiconductor-metal photodetector
★ dark current
論文目次 摘 要………………………………………………………………….(Ⅲ)
表 目………………………………………………………………….(Ⅳ)
圖 目………………………………………………………………….(Ⅴ)
第一章 序論……………………………………………………………1
第二章 元件製作與量測………………………………………………6
2-1 操作原理……………………………………………6
2-2 製作流程……………………………………………9
2-3 響應度……………………………………………..18
2-4 反應速度…………………………………………..18
第三章 暗電流特性與模擬…………………………………………..21
3-1 非晶矽-晶矽異質接面……………………………21
3-2 暗電流曲線擬合…………………………………..26
3-3 溝渠式電極Medici模擬………………………….33
3-4 蕭特基位障………………………………………..33
第四章 實驗結果與討論……………………………………………..43
4-1 抑制暗電流………………………………………..43
4-2 熱穩定度…………………………………………..43
4-3 非晶合成物………………………………………..45
4-4 電漿損傷…………………………………………..51
第五章 結論…………………………………………………………..69
參考文獻………………………………………………………………..71
附錄 A………………………………………………………………….76
附錄 B………………………………………………………………….77
致謝……………………………………………………………………..78
參考文獻 [1] J. S. Wang, C. G. Shih, W. H. Chang, J. R. Middleton, P. J. Apostolakis, and M. Feng, “11 GHz Bandwidth Optical Integrated Receivers Using GaAs MESFET and MSM Technology,” IEEE Photo. Technol. Lett., Vol. 5, No. 3, pp. 316-318, 1993.
[2] G. K. Chang, W. P. Hong, J. L. Gimlett, R. Bhat, C. K. Nguyen, G. Sasaki, and J. C. Young, “A 3 GHz Transimpedance OEIC Receiver for 1.3-1.55 μm Fiber-Optic Systems,” IEEE Photo. Technol. Lett., Vol. 2, No. 3, pp. 197-199, 1990.
[3] E. Bassous, M. Scheuermann, V. P. Kesan, M. Ritter, J. M. Halbout, and S. S. Lyer, “A High-Speed Silicon Metal-Semiconductor-Metal Photodetector Fully Integrable with (Bi)CMOS Circuits,” IEDM, pp. 187-190, 1991.
[4] M. Loken, L. Kappius, S. Manti, and C. Buchal, “Fabrication of Ultrafast Si Based MSM Photodetector,” Electron. Lett., Vol. 34, No. 10, pp. 1027-1028, 1998.
[5] J. Lu, R. Surridge, G. Pakulski, H. van Driel, and J. M. Xu, “Studies of High-Speed Metal-Semiconductor-Metal Photodetector with a GaAs/AlGaAs/GaAs Heterostructure,” IEEE Trans. Electron Devices, Vol. 40, No. 6, pp. 1087-1092, 1993.
[6] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2nd ed, Chap 10, pp. 613, 1985.
[7] M. Y. Liu, S. Y. Chou, S. Alexandrou, C. C. Wang and T. Y. Hsiang, “110 GHz Si MSM Photodetectors,” IEEE Trans. Electron Devices, Vol. 40, No. 11, pp. 2145-2146, 1993.
[8] Y. Liu, W. Khalil, P. B. Fischer, and S. Y. Chou, “Nanoscale Ultrafast Metal-Semiconductor-Metal Photodetectors,” IEEE Trans. Electron Devices, Vol. 39, No. 11, pp. 2674-2675, 1992.
[9] S. Y. Chou, Y. Liu, P. B. Fischer, “Tera-Hertz GaAs Metal-Semiconductor-Metal Photodetectors with Nanoscale Finger Spacing and Width,” IEDM, pp.745-748, 1991.
[10] H. Matsuura, A. Matsuda, H. Okushi, T. Okuno, and K. Tanaka, “Metal-Semiconductor Junctions and Amorphous-Crystalline Heterojunctions Using B-Doped Hydrogenated Amorphous Silicon,” Appl. Phys. Lett., Vol. 45, No. 4, pp. 433-435, 1984.
[11] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “Electrical Properties of n-Amorphous/p-Crystalline Silicon Heterojunctions,” J. Appl. Phys., Vol. 55, No. 4, pp. 1012-1019, 1984.
[12] H. Mimura, and Y. Hatanaka, “Carrier Transport Mechanisms of p-Type Amorphous-n-Type-Crystalline Silicon Heterojunctions,” J. Appl. Phys., Vol. 71, No. 5, pp. 2315-2320, 1992.
[13] H. Matsuura, and H. Okushi, “Schottky Barrier Junctions of Hydrogenated Amorphous Silicon-Germanium Alloys,” J. Appl. Phys., Vol. 62, No. 7, pp. 2871-2879, 1987.
[14] V. Smid, J. J. Mares, L. Stourach, and J. Kristofik, “Amorphous-Crystalline Heterojunctions,” in Tetrahedrally-Bonded Amorphous Semiconductors, D. Adler and H. Fritzsche, eds., Plenum Press, New York, pp. 483-500, 1985.
[15] L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “A U-Grooved Metal-Semiconductor-Metal Photodetector (UMSM-PD) with an i-a-Si:H Overlayer on a [100] p-Type Si Wafer,” IEEE Photo. Technol. Lett., Vol. 10, No. 4, pp. 579-581, 1998.
[16] J. Y. L. Ho, and K. S. Wong, “Bandwidth Enhancement in Silicon Metal-Semiconductor-Metal Photodetector by Trench Formation,” IEEE Photo. Technol. Lett., Vol. 8, No. 8, pp. 1064-1066, 1996.
[17] S. M. Sze, D. J. Coleman, Jr. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) Structure,” Solid-State Electron., Vol. 14, pp. 1209-1218, 1971.
[18] H. H. Wehmann, G. P. Tang, R. Klockenbrink, and A. Schlachetzki, “Dark-Current Analysis of InGaAs-MSM-Photodetectors on Silicon Substrates,” IEEE Trans. Electron Devices, Vol. 43, No. 9, pp. 1505-1509, 1996.
[19] M. Y. Liu, and S. Y. Chou, “Internal Emission Metal-Semicondutor-Metal Photodetectors on Si and GaAs for 1.3 μm Detection,” Appl. Phys. Lett., Vol. 66, No. 20, pp. 2673-2675, 1995.
[20] W. A. Wohlmuth, P. Fay, and I. Adesida, “Dark Current Suppression in GaAs Metal-Semiconductor-Metal Photodetectors, ” IEEE Photo. Technol. Lett., Vol. 8, No. 8, pp. 1061-1063, 1996.
[21] J. I. Chyi, T. S. Wei, J. W. Hong, W. Lin, and Y. K. Tu, “Low Dark Current and High Linearity InGaAs MSM Photodetectors,” Electron. Lett., Vol. 30, No. 4, pp. 355-356, 1994.
[22] T. C. Chung, “Optoelectronical Characteristics of Green-Blue-White a-SiN:H-Based p-i-n Thin-Film Light-Emitting Diodes,” Master Thesis, Institute of Electrical Engineering, National Central University, Chungli, Taiwan, Republic of China, 1998.
[23] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectron. Devices and Technol., Vol. 1, No. 1, pp. 67-84, 1986.
[24] J. B. Casady, and R. W. Johnson, “Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: a Review, ” Solid-State Electron., Vol. 39, No. 10, pp. 1409-1422, 1996.
[25] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, W. H. Chuang, and J. D. Hwang, “A High Optical-Gain β-SiC Bulk-Barrier Phototransistor for High-Temperature Applications, ” IEEE Photo. Technol. Lett., Vol. 10, No. 11, pp. 1611-1613, 1998.
[26] H. Mimura, and Y. Hatanaka, “The Use of Amorphous-Crystalline Silicon Heterojunctions for the Application to an Imaging Device,” J. Appl. Phys., Vol. 61, No. 7, pp. 2575-2580, 1987.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明