博碩士論文 89521047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.204.191.31
姓名 周克儒(Ke-Ru Zhou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 中華衛星一號之Ka-Band數位直播實驗通道特性分析與改善
(Channel Characteristics Analysis and Improvement on Ka-Band DirectBroadcast Experiment of Digital Signals for ROCSAT-1)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 多載波調變信號之濾波器組、載波數估測與載波回復系統設計
★ 中華衛星一號數位電視直播實驗使用Ka頻段之系統效能分析與模擬★ 利用小波轉換於影像之系統分析
★ 直接序列展頻系統利用平行干擾消除技術改善在多人使用干擾的分析與模擬★ 在CDMA細胞組成的行動電話系統架構下使用中心化功率控制
★ 以地理資訊系統為架構的無線電波傳播損耗預測和干擾分析系統★ LMDS系統受降雨衰減影響下通道使用效能之研究
★ 利用多模式分碼多重擷取技術以降區域多點分配服務系統中細胞間的干擾★ 利用旋轉基地台的觀念來提出一個在LMDS上的新細胞式架構
★ 直接序列展頻系統利用平行干擾消除與編碼技術在M-ary正交調變下之干擾分析與模擬★ 2.4GHz影像暨GPS無線通訊系統之整合
★ 16QAM調變系統★ LMDS通道在雨衰影響下的分析
★ OFDM技術應用於LMDS系統在時變通道模型下之效能評估★ 多載波分碼多重存取系統之研究分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 衛星通訊最初為軍事和科學研究而發展。現今,全世界有釵h國家提出商用Ka-band寬頻衛星系統計劃並進行建設。這些系統將提供多媒體及網際網路等通訊服務給全球的個人及企業使用。中華衛星一號是臺灣的第一顆科學衛星,它的成敗攸關日後衛星科技的發展,因此深受國人的關注。
對於低軌道衛星而言,系統在低仰角不僅遭受大的自由空間損失,且遭受嚴重的物理衰減。從驗證結果知,雨衰是實驗中影響最大的因素,隨著雨率愈大、頻帶愈高,或仰角愈低,雨衰值亦隨之增加。因為頻帶關係,所以上鏈(28.25GHz)比下鏈(18.45GHz)雨衰值大
對於衛星通訊實驗,建立一個趨近真實情況的通道模型是非常重要。在過去的兩年中,我們已經成弘竣F釵h針對中華衛星一號Ka頻帶的通道模型相關的研究和模擬。本論文中,我們做了釵h提升錯誤更正碼的編碼效能的架構:迴旋碼(convolutional code)、連鎖碼(concatenated code)、晶格編碼調變(trellis coded modulation)、渦輪碼(turbo code)、渦輪晶格編碼調變(turbo-trellis coded modulation)加入模型中。渦輪晶格編碼調變(turbo-trellis coded modulation)有很好的編碼效能,但是其複雜度高且須要花大量的時間。
然後,我們討論中華衛星一號鏈結之所需及在不同路逕的相關變化。因此,我們選擇中華衛星一號的一個路逕,便對於其模擬的結果作完整的描述。最後,對於中華衛星一號實驗模擬結果給予一些結論及建議。
摘要(英) Satellite communications were originally developed for scientific and military researches. Nowadays, a number of nations have begun their plans to implement commercial Ka-band satellite systems in the world. These systems will offer multi-media and Internet communications services to individual and corporate customers around the world. ROCSAT-1 is Taiwan’s first scientific satellite. Because its success or failure will affect the future development of satellite technology, it is an object of great concern for the people of Taiwan.
For LEO satellites, systems at low elevation angle suffer not only large free space loss but also great physical attenuations. From the verifications, rain attenuation is the dominant propagation impairment in our experiment. The larger rain rate, the higher frequency or the lower elevation angle is, the larger rain attenuation value will become. Rain attenuation induced in the uplink direction (28.25GHz) are much larger than that induced in the downlink direction (18.45GHz) since the uplink utilizes a high frequency band.
For satellite communication experiments, it is very significant to establish a channel model as close as possible to the real situation. In the past two years, we have successively made some researches on channel characteristics and channel simulations of ROCSAT-1. In this thesis, we make many researches to improve the system performance by various FEC coding schemes: convolutional code, concatenated code, trellis coded modulation, turbo code, and turbo trellis coded modulation scheme. From the results, Turbo trellis coded modulation scheme has better performance, but its decoding structure demands more complexity and takes more time.
We discuss the specifications of ROCSAT-1 link need and how they vary through different paths. For this reason, we choose a real ROCSAT-1 pass as an example to make a complete description of the simulation procedure. Finally, we present the simulation process and give some suggestions from the simulation results.
關鍵字(中) ★ 中華衛星一號 關鍵字(英) ★ Ka-Band
★ ROCSAT-1
論文目次 Abstract ii
Contents iv
List of Figures vi
List of Tables x
Chapter 1. Introduction 1
1.1 Overview of LEO ROCSAT-1 2
1.2 Organization of The Thesis 4
Chapter 2. Characteristics of Ka-Band Channel 6
2.1 Atmospheric Absorption Model 7
2.1.1Calculation of Atmospheric Absorption 7
2.1.2 The Results of Atmospheric Attenuation 10
2.2 Rainfall Rate and Rain Attenuation 12
2.2.1 Long-term Statistics of Rainfall Rate Over The Taiwan Area 12
2.2.2 Rain Attenuation 15
Chapter 3. Rain Attenuation Prediction Models 20
3.1 Crane Global Rain Attenuation Model 21
3.2 ITU-R Rain Attenuation Model 27
3.3 DAH Rain Attenuation Model 33
3.4 Rain Attenuation Prediction Comparisons Over Taiwan Area 36
Chapter 4. The Improvement of Forward Error Correction Error Coding Scheme 45
4.1 FEC Protection 45
4.2 Convolutional Codes 47
4.3 Concatenated Codes 48
4.3.1 Concatenated Channel Coding System 48
4.3.2 Performance analysis of Concatenated Codes 50
4.4 Trellis Coded Modulation 55
4.5 Turbo Codes 56
4.6 Turbo Trellis Coded Modulation Scheme 58
4.7 Simulation results 61
Chapter 5. Link Budget Analysis and Broadcasting Experiment Planning Simulation Results 69
5.1 Link Budget Evaluation 70
5.1.1 Antenna Gain 70
5.1.2 Transmitter Power, Pt & Effective Isotropic Radiated Power, EIRP/ 71
5.1.3 Free Space Loss 72
5.1.4 C/N, C/ N0 ,and Eb /N0 73
5.1.5 Combined C /N0 74
5.1.7 Noise Figure, F and Noise Temperature, T 75
5.2 Statistics of Link Times and Maximum Elevation Angle of
ROCSAT-1 76
5.3 Simulation Results 79
5.3.1 Elevation Angle and Azimuth 79
5.3.2 Cone angle and Clock angle 81
5.3.3 Antenna Gain and Free Space Loss 84
5.3.4 Estimated Rain Attenuation 85
5.3.5 Power Level 87
5.3.6 Received C/N0 89
Chapter 6. Conclusions and Further Work 91
6.1 Conclusions 91
6.2 Further Work 92
Appendixes
Appendix I 93
References 96
參考文獻 [1] Louis J. Ippolito Jr., “Radiowave Propagation in Satellite
Communications”.
[2] ITU Recommendation ITU-R RPN.618-4, 1996
[3] Asoka Dissanayake, Jeremy Allnutt, and Fatim Haidara, ” A prediction model that combines rain attenuation and other propagation impairment along earth-satellite paths ”, IEEE, Trans. on antenna and propagation, vol45, No 10,pp 1546-1558, 1997.
[4] Yen-Hsyang Chu and Shun-Peng Shih, “Ka Band Propagation Experiment for ROCSAT-1:Preliminary Results,” 中華衛星一號科學成果研討會大會手冊及論文摘要集, pp.111~112, 1999.
[5] Robert K. Crane, “Prediction of Attenuation by rain,” IEEE Trans. on Communications, Vol. Com-28, No. 9, pp1717~1733 Sept. 1980.
[6] Robert K. Crane, “A Global Model for Rain Attenuation Prediction,”EASCON’78 Record, IEEE Pub, 78CH 1354-4 AES, Arlington, VA, Sept. 1978.
[7] Crane, R. K., “Electromagnetic Wave Propagation Through Rain,”
Wiley, 1996.
[8] ITU-R Rec. 837-1, International Telecommunication Union.
[9] CCIR Rep.564-4
[10] Leon W., Digital and Analog Communication Systems.
[11] Rolf Johannesson, Kamil Sh. Zigangirov, ”Fundamentals of Convolutional Coding,” IEEE Press, 1999.
[12] G. D. Forney, Concatenated Codes, Cambridge, Mass.: MIT Press,
1967.
[13] Stephen B. Wicker, Vijay K. Bhargava, Reed-Solomon Codes and Their applications, Piscataway, pp. 25 ~ 38, NJ : IEEE Press, 1994.
[14] G. Ungerboeck and I. Csajka, “On improving data link performance by increasing the channel alphabet and introducing sequence coding,” in Proc., IEEE Int. Symp. On Inform. Theory, June 1976.
[15] G. Ungerboeck, “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. Inform. Theory, vol. IT-28, no. 1, pp.55-67, Jan. 1982.
[16] Matthew C. Valenti, “Iteractive Detection and Decoding for Wireless Communication”, Viginia Polytechnic Institute and State University, July 8, 1999.
[17] J. Hagenauer, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Infrom. Theory, vol. 42, pp.429-445, Mar. 1996.
[18] Matthew C. Valenti, “Iteractive Detection and Decoding for Wireless Communication”, Viginia Polytechnic Institute and State University, July 8, 1999.
[19] B. Vucetic,”Iterative decoding algorithm,” in PIMRC’97, Helsinki, Finland, Sep. 1997, pp. 99-120.
[20] Branka Vucetic, Jinhong Yuan,” TURBO CODES Principles and Applications ”.
[21] P. Robertson and T. Woerz, “Bandwidth efficient turbo trellis-coded modulation using punctured component codes,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 2, Feb. 1998, pp. 206-218.
[22] Gray D. Gordon and Walter L. Morgan, Principles of Communications Satellites, Jonh Wiley & Sons, Inc, 1993.
[23] Yi-Jeng Liau, “ Simulation & Preliminary Verification of Direct
Broadcast Experiments Via ROCSAT-1,” Master Thesis, National
Tsing-Hua University.
[24] Kuo-Wei Chao, “Noise Figure Modification and Simulation Results,”quarterly report to NSPO, September, 2000.
[25] Le-Gen Shi, “Channel Simulation of LEO ROCSAT-1 Using Ka-Band,” Master Thesis, National Tsing-Hua University.
[26] Pei-Kai Liau, “Channel Characteristics Analysis and ECP Experiment Planning for LEO ROCSAT-1 Using Ka-Band,” Master Thesis, National Tsing-Hua University, June 1999.
[27] Leo Wang, “System Performance Analysis and Simulation for ROCSAT-1 Direct Broadcast Experiment of Digital TV signals Using Ka-Band,” Master Thesis, National Center University.
指導教授 蔡木金(Mu-King Tsay) 審核日期 2002-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明