博碩士論文 89521089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.21.247.145
姓名 楊銘基(Ming-Ji Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高性能並聯式主動電力濾波器系統設計與實現
(Design and Implementation of High Performance Shunt Active Power Filter Systems)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要目的為設計與實現具有高性能的並聯式主動電力濾波器系統。過去並聯式主動濾波器常用的控制器為比例-積分(PI)控制器,而當PI控制器的參數面臨不同負載變化時,其控制器參數可能必須經過重新調整。有鑑於此,本論文針對單相並聯式主動電力濾波器提出兩種具有強健性及適應性的控制器,來改善市電功率因數及緩解電流諧波污染等問題。本論文所提出來的電力濾波器系統,分別包含了Takagi-Sugeno (T-S) 模糊控制及參考模型適應控制器(MRAC)的控制演算法。然而,此並聯式主動電力濾波器的數學模型為一個雙線性系統,不易設計其控制器及分析穩定度。因此,本論文先利用一般線性化的方法,來近似系統的非線性特性,並同時解決穩定度的問題。
本論文T-S模糊控制器的設計上,是基於平行分佈補償器(PDC)的設計方法,其中穩定的控制器回授增益值與共同之正定矩陣,則是以李亞普諾夫(Lyapunov)穩定理論為基礎,最後藉由MATLAB應用軟體的線性矩陣不等式(LMI)求解,以確保每個子系統均能滿足李亞普諾夫不等式。而在本論文參考模型適應控制器的設計上,是根據李亞普諾夫穩定理論與Barbalat定理設計出一適應控制律,而系統輸出根據此律與參考模型參數進行追蹤比較,最後保證系統能漸進穩定。與傳統比例-積分控制器相比,本論文所提的T-S模糊及適應控制器應用,具有較高的設計彈性、強健性與適應性,可因應系統不同負載的劇烈變化,同時保持一致的輸出性能。
為了證明所提出的控制方法之可行性,除了運用數位訊號微處理器(dsPIC30F4012)來實現複雜的控制法則運算外,也建構實現一1kVA的測試原型機,來實際測試系統的性能。最後經模擬與實驗結果驗證本系統可提高功率因數、降低電流諧波及暫態響應的強健性。
摘要(英) The main objective of this dissertation is to design and implement high performance shunt active power filter (APF) systems. In the past, most shunt active power filters used proportional integral (PI) controller. However, it may be necessary to retune the PI parameters for different operation conditions. Therefore, this dissertation proposes two kinds of controllers, which are robust and adaptive, for a single-phase shunt APF to improve line power factor (PF) and mitigate line current harmonics. The APF systems respectively include a Takagi-Sugeno (T-S) fuzzy and model reference adaptive controllers (MRAC). Because APF is a bilinear system, it is not easy to design the controller. Hence, this dissertation firstly employs the linearization method to approach the nonlinearity of the system and solve the stability problem.
In the T-S fuzzy controller design, the parallel distributed compensation (PDC) is employed with the T-S models. To find stable feedback gains and a common positive-definite matrix for the designed fuzzy control system, it is based on Lyapunov’s stability theory and solved via MATLAB’s linear matrix inequality (LMI) tool. In the MRAC design, Lyapunov’s stability theory and Barbalat’s Lemma are used to design an adaptive law which guarantees asymptotic output tracking for the system. While compared with the conventional proportional-integral (PI) control, the advantages of the T-S fuzzy and MRAC are more flexible, adaptive and robust. Moreover, MRAC can self-tune the controller gains to assure the system stability.
To verify the proposed systems, a digital signal microcontroller (dsPIC30F4012) is utilized to implement the control algorithms. And an 1-kVA laboratory prototype of the active power filter is built to test the feasibility. Both simulation and experimental results are provided to verify the effectiveness of the proposed active power filter systems which increase the power factor, reduce the current harmonics and enhance the robustness of the transient response.
關鍵字(中) ★ 電流諧波
★ 功率因數
★ 參考模型適應控制
★ T-S模糊控制
★ 主動式電力濾波器
關鍵字(英) ★ Active power filter
★ T-S fuzzy control
★ model reference adaptive control
★ power factor
★ current harmonic.
論文目次 ABSTRACT I
ACKNOWLEDGEMENT III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES XI
CHAPTER 1 INTRODUCTION 1
1.1 Motivations and Objective 1
1.2 Survey of Previous Work 3
1.3 Organization of the Dissertation 5
CHAPTER 2 POWER FILTERS 8
2.1 Overview 8
2.2 General Harmonic Indices 9
2.3 Existing Harmonic Standards 10
2.4 Passive Power Filters 15
2.5 Active Power Filters 17
2.5.1 Series Active Power Filter 18
2.5.2 Shunt Active Power Filter 20
2.5.3 Hybrid Active Power Filters 23
2.5.3.1 Hybrid Series Active Power Filter 23
2.5.3.2 Hybrid Shunt Active Power Filter 24
2.6 Summary 26
CHAPTER 3 DYNAMICAL MODEL OF SHUNT APF 27
3.1 Overview 27
3.2 Operation of the Shunt Active Power Filter 28
3.3 Modeling of the Shunt Active Power Filter 31
3.4 Summary 35
CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION 36
4.1 Overview 36
4.2 Power Stage Circuit 38
4.2.1 Capacitance of the VSI 38
4.2.2 Inductance of the VSI 40
4.3 Sensor Circuit Module 41
4.3.1 Voltage Sensor Circuits 41
4.3.2 Current Sensor Circuit 42
4.3.3 Zero Crossing Detection Circuit 42
4.4 Digital Signal Microcontroller 43
4.5 Photo-coupler Driver Circuit 44
4.6 Power Supply Module 46
CHAPTER 5 LMI-BASED T-S FUZZY CONTROLLER DESIGN 51
5.1 Overview 51
5.2 T-S Fuzzy Modeling 51
5.3 T-S Fuzzy Controller Design 54
5.4 Stability Analysis and Control Gains Design 55
5.5 Simulation and Experimental Verifications 58
5.5.1 Simulation Results 60
5.5.2 Experimental Results 63
5.6 Summary 67
CHAPTER 6 MODEL REFERENCE ADAPTIVE CONTROL DESIGN 68
6.1 Overview 68
6.2 Model Reference Adaptive Control Design 69
6.3 Simulation and Experimental Verifications 73
6.3.1 Simulation Results 73
6.3.2 Experimental Results 75
6.4 Summary 82
CHAPTER 7 CONCLUSIONS 83
REFERENCES 85
VITA 95
PUBLICATION LIST 97
參考文獻 [1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. 2nd Edition, John Wiley & Sons, Inc., 1996.
[2] IEC 61000-3-2 Int. Std., Electromagnetic Compatibility (EMC) – Part 3-2: Limits for Harmonic Current Emissions (equipment input current up to and including 16A per phase), Int. Electrotech. Commission, 2.1 ed. 2001.
[3] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std. 519-1992, 1993.
[4] B. Singh, K. Al-Haddad, and A. Chandra, "A review of active filters for power quality improvement," IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960–971, Oct. 1999.
[5] D. A. Torrey, and A. M. Al-Zamel, "Single-phase active power filters for multiple nonlinear loads," IEEE Trans. Power Electron., vol. 10, no. 3, pp. 263–272, May 1995.
[6] F. P. D. Souza, and I. Barbi, "Single-phase active power filters for distributed power factor correction," in Proc. IEEE Power Electron. Spec. Conf., 2000, vol. 1, pp. 500–505.
[7] S. Sladic, M. Odavic, and Z. Jakopovic, "Single phase active power filter with sliding mode control," in Proc. IEEE Mediterranean Electrotechnical Conf., 2004, vol. 3, pp. 1133–1136.
[8] C. Qiao, K. M. Smedley, and F. Maddaleno, "A single-phase active power filter with one-cycle control under unipolar operation," IEEE Trans. Circuits Syst. I, vol. 51, no. 8, pp. 1623–1630, Aug. 2004.
[9] C. Qiao, Taotao Jin, and K. M. Smedley, "One-cycle control of three-phase active power filter with vector operation," IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 455–463, Apr. 2004.
[10] L. H. Tey, P. L. So, and Y. C. Chu, "Improvement of power quality using adaptive shunt active filter," IEEE Trans. Power Del., vol. 20, no. 2, pp. 1558–1568, Apr. 2005.
[11] M. Routimo, M. Salo, and H. Tuusa, "Comparison of voltage-source and current-source shunt active power filters," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 636–643, Mar. 2007.
[12] C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, "High performance current controller for selective harmonic compensation in active power filters," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1826–1835, Sep. 2007.
[13] K. K. Shyu, M. J. Yang, Y. M. Chen, and Y. F. Lin, "Model reference adaptive control design for a shunt active-power-filter system," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 97–106, Jan. 2008.
[14] A. A. Valdez, G. Escobar, and R. Ortega, "An adaptive controller for the shunt active filter considering a dynamic load and the line impedance," IEEE Trans. Control Syst. Technol., vol. 17, no. 2, pp. 458–464, Mar. 2009.
[15] H. Fujita, "A single-phase active filter using an H-bridge PWM converter with a sampling frequency quadruple of the switching frequency," IEEE Trans. Power Electron., vol. 24, no. 4, pp. 934–941, Apr. 2009.
[16] W. M. Grady, M. J. Samotyj, and A. H. Noyola, "Survey of active power line conditioning methodologies," IEEE Trans. Power Del., vol. 5, pp. 1536–1542, July 1990.
[17] G. Kamath, N. Mohan, and V.D. Albkrtson, "Hardware implementation of a novel reduced rating active filter for 3-phase, 4-wire loads", in Proc. IEEE Appl. Power Electron. Conf., 1995, vol. 2, pp. 984–989.
[18] S. Bhattacharya, T. M. Frank, D. M. Divan, and B. Banerjee, "Active filter system implementation," IEEE Ind. Appl. Mag., vol. 4, pp. 47-63, Sep.-Oct. 1998.
[19] B. R. Lin, and Y. L. Hou, "Single-phase integrated power quality compensator based on capacitor-clamped configuration," IEEE Trans. Ind. Electron., vol. 49, pp. 173–185, Feb. 2002.
[20] T. E. Nunez-Zuniga, and J. A. Pomilio, "Shunt active power filter synthesizing resistive loads," IEEE Trans. Power Electron., vol. 17, no. 2, pp. 273–278, Mar. 2002.
[21] M. Basu, S. P. Das, and G. K. Dubey, "Parallel converter scheme for high-power active power filters," IEE Proc. Electr. Power Appl., vol. 151, no. 4, pp. 460–466, July 2004.
[22] H. Kömürcügil, and Ö. Kükrer, "A new control strategy for single-phase shunt active power filters using a Lyapunov function," IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 305–312, Feb. 2006.
[23] L. Asiminoaei, C. Lascu, F. Blaabjerg, and I. Boldea, "Performance improvement of shunt active power filter with dual parallel topology," IEEE Trans. Power Electron., vol. 21, no. 1, pp. 247–259, Jan. 2007.
[24] P. Kirawanich, and R. M. O'Connell, "Fuzzy logic control of an active power line conditioner," IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1574–1585, Nov. 2004.
[25] M. Cheng, Q. Sun, and E. Zhou, "New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive," IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 814–821, Jun. 2006.
[26] A. R. Ofoli, and A. Rubaai, "Real-time implementation of a fuzzy logic controller for switch-mode power-stage DC–DC converters," IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1367–1374, Nov.-Dec. 2006.
[27] F. J. Lin, P. K. Huang, C. C. Wang, and L. T. Teng, "An induction generator system using fuzzy modeling and recurrent fuzzy neural network," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260–271, Jan. 2007.
[28] W. Li, and Y. Hori, "Vibration suppression using single neuron-based PI fuzzy controller and fractional-order disturbance observer," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 117–126, Feb. 2007.
[29] M. N. Uddin, and M. A. Rahman, "High-speed control of IPMSM drives using improved fuzzy logic algorithms," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 190–199, Feb. 2007.
[30] T. Takagi, and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116–132, Jan./Feb. 1985.
[31] C. N. Bhende, S. Mishra, and S. K. Jain, "TS-fuzzy-controlled active power filter for load compensation," IEEE Trans. Power Del., vol. 21, pp. 1459–1465, July 2006.
[32] S. Sastry, and M. Bodson, Adaptive Control Stability, Convergence and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[33] G. Ciccarella, and P. Marietti, "Model reference adaptive control of a thermostatic chamber," IEEE Trans. Ind. Electron., vol. 36, no. 1, pp. 88–93, Feb. 1989.
[34] M. Sunwoo, K. C. Cheok, and N. J. Huang, "Model reference adaptive control for vehicle active suspension systems," IEEE Trans. Ind. Electron., vol. 38, no. 3, pp. 217–222, June 1991.
[35] S. M. Islam, C. B. Somuah, M. S. Ahmed, and Y. L. Abdel-Magid, "Improved speed regulation of an excitation controlled induction motor," IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 694–702, May–June 1992.
[36] L. A. D. S. Ribeiro, C. B. Jacobina, A. M. N. Lima, and A. C. Oliveira, "Parameter sensitivity of MRAC models employed in IFO-controlled AC motor drive," IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 536–545, Aug. 1997.
[37] A. Mujanovic, P. Crnosija, and Z. Ban, "Determination of transient error and signal adaptation algorithm coefficients in MRAS," in Proc. IEEE International Symp. Ind. Electron., 1999, vol. 2, pp. 631–634.
[38] P. Crnosija, Z. Ban, and R. Krishnan, "Application of model reference adaptive control with signal adaptation to PM brushless DC motor drives," in Proc. IEEE International Symp. Ind. Electron., 2002, vol. 3, pp. 689–694.
[39] Z. Ban, and P. Crnosija, "Application of the MRAC with simplified discrete parameter adaptation algorithm for control of the DC electromotor drive," in Proc. IEEE International Conf. Ind. Technol., 2003, vol. 1, pp. 506–511.
[40] E. Leksono, and Pratikto "Adaptive speed control of induction motor with DSP implementation," in Proc. IEEE Ind. Electron. Conf., 2004, vol. 2, pp. 1423–1428.
[41] L. Yacoubi, K. Al-Haddad, L.-A. Dessaint, and F. Fnaiech, "Linear and nonlinear control techniques for a three-phase three-level NPC boost rectifier," IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1908–1918, Dec. 2006.
[42] Y. D. Landau, Adaptive control: the model reference approach. Marcel Dekker, 1979.
[43] R. Isermann, K. H. Lachman, and D. Matko, Adaptive contorl systems. NY: Prentice-Hall, 1992.
[44] I. D. Landau, R. Lozano, and M. M'Saad, Adaptive control. NY: London Springer, 1998.
[45] H. K. Khalil, Nonlinear systems. 2nd Edition, Upper Saddle River, NJ: Prentice-Hall, 1996.
[46] dsPIC30F Family Reference Manual. Microchip Technology Inc., 2003.
[47] J. Arrillage, B. C. Smith, N. R. Watson, and A. R. Wood, Power System Harmonic Analysis, John Wiley & Sons, 1997.
[48] J. Arrillaga, N. R. Watson, and S. Chen, Power System Quality Assessment, John Wiley & Sons, 2000.
[49] J. Arrillaga, and N. R. Watson, Power System Harmonics, 2nd Edition, Chichester, West Sussex, England; Hoboken, NJ: J. Wiley & Sons, 2003.
[50] H. Sasaki, and T. Machida, "A new method to eliminate a.c. harmonic currents by magnetic flux compensation-considerations on basic design," IEEE Trans. Power Apparatus Syst., vol. PAS-90, no. 5, pp. 2009-2019, 1971.
[51] H. Akagi, A. Navea, and S. Atoh, "Control strategy of active power filters using multiple voltage-source PWM converters," IEEE Trans. Ind. Appl., vol. IA-22, no. 3, pp. 460–465, May–June 1986.
[52] G. L. Harmelen, and J. H. R. Enslin, "Real-time dynamic control of dynamic power filters in supplies with high contamination," IEEE Trans. Power Electron., vol. 8, no. 3, pp. 301–308, Jul. 1993.
[53] K. Hayafune, T. Ueshiba, E. Masada, and Y. Ogiwara, "Microcomputer controlled active power filter," in Proc. International. Ind. Electron., Control and Instrumentation Conf., 1984, pp. 1221–1226.
[54] D. Detjen, J. Jacobs, R. W. De Doncker, and H. G. Mall, "A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment," IEEE Trans. Power Electron., vol. 16, no. 6, pp. 821–827, Jul. 2001.
[55] S. Kim, and P. N. Enjeti, "A new hybrid active power filter (APF) topology," IEEE Trans. Power Electron., vol. 17, no. 1, pp. 48–54, Jan. 2002.
[56] D. Rivas, L. Moran, J. W. Dixon, and J. R. Espinoza, "Improving passive filter compensation performance with active techniques," IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 161–170, Feb. 2003.
[57] D. Li, Q. Chen, Z. Jia, and J. Ke, "A novel active power filter with fundamental magnetic flux compensation," IEEE Trans. Power Del., vol. 19, no. 2, pp. 799–805, Apr. 2004.
[58] Z. Chen, F. Blaabjerg, and J. K. Pedersen, "Hybrid compensation arrangement in dispersed generation systems," IEEE Trans. Power Del., vol. 20, no. 2, pp. 1719–1727, Apr. 2005.
[59] A. Sharma, K. D. T. Ngo, X. Wu, F. C. Lee, and M. Xu, "A switched-active and passive filter configuration for resonance-free transient regulation," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1492–1495, Sep. 2006.
[60] H. Yang, and S. Ren, "A practical series-shunt hybrid active power filter based on fundamental magnetic potential self-balance," IEEE Trans. Power Del., vol. 23, no. 4, pp. 2089–2096, Oct. 2008.
[61] V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, "Hybrid Active Filter for Reactive and Harmonics Compensation in a Distribution Network," IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 670–677, Mar. 2009.
[62] S. Round, Active filtering and VAR compensation, PhD thesis, University of Canterbury, New Zealand, 1992.
[63] F. Z. Peng, H. Akagi, and A. Nabae, "A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters," IEEE Trans. Ind. Applicat., pp. 983–990, Nov./Dec. 1999.
[64] S. Bhattacharya, D. Divan, and B. Banerjee, "Active filter solutions for utility interface," in Proc. IEEE International Symp. Ind. Electron., 1995, pp. 53–63.
[65] F. Z. Peng, "Harmonic sources and filtering approaches," IEEE Ind. Appl. Mag., pp. 18–25, Jul./Aug. 2001.
[66] H. Fujita and H. Akagi, "A practical approach to harmonic compensation in power systemsseries connection of passive and active filters," IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1020–1025, Nov./Dec. 1991.
[67] S. Bhattacharya, P.-T. Cheng, and D. Divan, "Hybrid solutions for improving passive filter performance in high power applications," IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 732–747, May/Jun. 1997.
[68] S. Srianthumrong and H. Akagi, "A medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter," IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 874–882, May/Jun. 2003.
[69] K. M. Smedley, L. Zhou and C. Qiao, "Unified constant-frequency integration control of active power filters-steady-state and dynamics," IEEE Trans. Power Electron., vol. 16, no. 3, pp. 428–436, May 2001.
[70] Z. Pan, F. Z. Peng, and S. Wang, "Power factor correction using a series active filter," IEEE Trans. Power Electron., vol. 20, no. 1, pp. 148–153, Jan. 2005.
[71] V. B. Sriram, S. SenGupta and A. Patra, "Indirect current control of a single-phase voltage-sourced boost-type bridge converter operated in the rectifier mode," IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1130–1137, Sep. 2003.
[72] H. O. Wang, K. Tanaka, and M. Griffin, "An approach to fuzzy control of nonlinear systems: stability and design issues," IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14–23, Feb. 1996.
[73] M. Sugeno, and G. T. Kang, "Fuzzy modeling and control of multilayer incinerator," Fuzzy Sets Syst., no. 18, pp. 329-346, 1986.
[74] H. O. Wang, K. Tanaka, and M. F. Griffin, "Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model," Proc. FUZZ-IEEE/IFES’95, pp. 531-538, 1995.
[75] K. Tanaka, and H. O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, John Wiliey & Son Inc., 2001.
[76] H. K. Khalil, Nonlinear systems. 2nd Edition, Upper Saddle River, NJ: Prentice-Hall, 1996.
[77] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. 4th Edition, Addison-Wesley, 2002.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2009-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明