博碩士論文 89522033 詳細資訊


姓名 吳鴻俊(Hung-Chun Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 腹腔鏡手術模擬系統中的流血特效
(Bleeding effects for laparoscopic surgery simulation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文的研究中,我們提出混合式液體表現模塑 (hybrid liquid representation modeling) 的技術應用於腹腔鏡手術模擬系統中。我們過去所提出的腹腔鏡手術模擬系統包括下列五個部分:即時的物理變形模塑、流血模擬、力回饋展現、快速的碰撞偵測、及手術動作。其中流血模擬系統結合了質點系統 (particle system) 和以方塊切割演算法(marching cubes algorithm)做的液體表面重建 (surface reconstruction)。為了改善液面重建的速度和增進視覺的效果,混合式液體表現模塑包含了三個部分:(i) 表面追蹤法 (surface tracking method), (ii) 快速傅立葉轉換 (fast Fourier transform),和 (iii) 動態質點表現法 (dynamic particle representation)。表面追蹤法和快速傅立葉轉換都是用來分類出在液面上的質點;但兩者結合在一起,可以獲得更好的效果。動態質點表現法是用來減少表面重建所需要的質點數目和時間。手術模擬所需要的平滑的血液表面與噴灑出的血珠,必須即時的展現。混合式液體表面模塑技術可以即時提供液面與獨立質點的表現,因此適用於手術模擬中的流血特效。
摘要(英) The laparoscopic surgical simulation has been a state-of-art topic in these years. One of the most challenging problems in the surgical simulation is the high fidelity of visual effects. In this paper, a computer graphics approach for simulating bleeding effects is proposed. The proposed hybrid liquid representation modeling (HLRM) approach combines traditional particle system with the isosurface representation using the marching cubes algorithm. For improving the performance and visual effects, the HLRM consists of three components: (i) surface tracking method, (ii) fast Fourier transform, and (iii) dynamic particle representation. The surface tracking method is used to classify particles near the liquid surface. Combining with the surface tracking method, the fast Fourier transform algorithm can be used to find the isolated particles. Finally a dynamic particle representation is proposed for saving the computation time of the marching cubes algorithm. It is essential to render the fair blood surface and sprayed blood needed in surgery simulation. HLRM is able to render the liquid surface and isolated particles in real time. Therefore our approach is suitable for bleeding effects in laparoscopic surgery simulation.
關鍵字(中) ★ 模擬
★ 虛擬實境
★ 流體
★ 流體模擬
★ 表面重建
★ 流血
關鍵字(英) ★ surgery simulation
★ flow simulation
★ fluid flow
★ particle system
★ bleeding
★ surface reconstruction
論文目次 Abstract
Contents
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Motivation
1.2 System overview
1.2.1 Particle system
1.2.2 Liquid surface representation
1.2.3 Collision detection
1.2.4 Surgical operations
1.3 Thesis organization
Chapter 2 Related Work
2.1 Requirements for bleeding simulation
2.1.1 Real-time fluid simulation
2.1.2 Liquid representation
2.1.3 Surgical operations
2.1.4 Realistic visualization
2.2 Fluid simulation techniques
2.2.1 Computer graphics techniques
2.2.2 Physical-based techniques
2.3 Bleeding simulation in virtual surgery
2.4 Related applications of FFT on fluid simulation
2.5 Studies on surgical simulation
Chapter 3 Liquid Representation
3.1 Particle system
3.1.1 Attributes in particle system
3.1.2 Motion of particles
3.1.3 Physical-based motion
3.2 Surface reconstruction
3.2.1 Surface representation
3.2.2 Marching cubes algorithm
Chapter 4 Hybrid Liquid Representation Modeling
4.1 Overview
4.2 Surface tracking
4.3 Fast Fourier transform
4.3.1 Problem definition
4.3.2 Weight design
4.3.3 Filters
4.4 Dynamic particle representation
Chapter 5 The Integrated Environment for Surgical Simulation
5.1 Surgical simulation environment
5.1.1 Realistic virtual human organs
5.1.2 Realistic virtual laparoscope and surgical instruments
5.1.3 Visualization of user control
5.1.4 Virtual surgical instrument control
5.1.5 User interface
5.2 Collision detection and collision response
5.2.1 Collision in the particle system
5.2.2 Building an AABB tree
5.2.3 Intersection testing
5.2.4 Updating an AABB tree after bleeding
Chapter 6 Experiments
6.1 Experimental platforms
6.2 Hybrid liquid representation modeling
6.3 Bleeding in laparoscopic surgical simulation system
Chapter 7 Conclusions
References
參考文獻 [1] Basdogan, C., C.-H. Ho, and M. A. Srinivasan, “Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces,” in Proc. MMVR (Medical Meets Virtual Reality) ’’99 Conference, San Francisco, CA, Jan.20-23, 1999, pp.38-44.
[2] Basdogan, C., C.-H. Ho, M. A. Srinivasan, S. D. Small, and S. L. Dawson, “Force interactions in laparoscopic simulations: haptic rendering of soft tissues,” in Proc. of Conf. on Medicine Meets Virtual Reality, San Diego, CA, Jan.19-22, 1998, pp.385-391.
[3] Bro-Nielsen, M., “Finite element modeling in surgery simulation,” IEEE Special Issue on Virtual & Augmented Reality in Medicine, Vol.86, No.3, pp.490-503, 1998.
[4] Chen, J. and N. Lobo, “Towards interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations,” Graphical Models and Image Processing, Vol. 57, No. 2, pp.107-116, Mar. 1995.
[5] Chen, J., N. Lobo, C. E. Hughes, and J. M. Moshell, “Real-time fluid simulation in a dynamic virtual environment,” IEEE Computer Graphics and Application, Vol. 17, No. 3, pp.52-61, 1997.
[6] Cotin, S., H. Delingette, and N. Ayache, Efficient Linear Elastic Models of Soft Tissues for Real-time Surgery Simulation, Technique Report TR-98-3510, Institut National de Recherche en Informatique et en Automatique (INRIA), 1998.
[7] Cover, S. A., N. F. Ezquerra, J. F. O’Brien, R. Rowe, J. Gadacz, and E. Palm, “Interactively deformable models for surgery simulation,” IEEE Computer Graphics & Applications, Vol.13, No.6, pp.68-75, 1993.
[8] Fedkiw, R., J. Stam, and H. W. Jensen, “Visual simulation of smoke,” in Proc. SIGGRAPH 2001, Los Angeles, CA, Aug.12-17, 2001,pp.15-22.
[9] Foster, N. and D. Metaxas, “Controlling fluid animation,” in Proc. CGI’97, Hasselt and Diepenbeek, Belgium, June 23-27, 1997, pp.178-188.
[10] Foster, N. and D. Metaxas, “Modeling the motion of a hot turbulent gas,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.181-188.
[11] Foster, N. and D. Metaxas, “Realistic animation of liquids,” in Proc. GI’96, Toronto, Canada, May 22-24, 1996, pp.204-212.
[12] Foster, N. and R. Fedkiw, “Practical animation of liquids,” in Proc. SIGGRAPH 2001, Los Angeles, CA, Aug.12-17, 2001, pp.23-30.
[13] Fournier, A. and W. T. Reeves, “A simple model of ocean waves,” in Proc. SIGGRAPH’86, Dallas, Aug. 18-22, 1986, pp.75-84.
[14] Goss, M. E., “A real-time particle system for display of ship wakes,” IEEE Computer Graphics and Applications, Vol.10, No.3, pp.30-35, 1990.
[15] Kass, M. and G. Miller, “Rapid, stable fluid dynamics for computer graphics,” in Proc. SIGGRAPH’90, Dallas, Aug. 6-10, 1990, pp.49-57.
[16] Kuhn, C., U. Kuhnapfel, H.-G. Krumm, and B. Neisius, “A ‘virtual reality’ based training system for minimally invasive surgery,” in Proc. Computer Assisted Radiology (CAR’96), Paris, Jun.26-29, 1996, pp.764-769.
[17] Kuhnapfel, U. G. and B. Neisius, “CAD-based graphical computer simulation in endoscopic surgery,” Endoscopic Surgery and Allied Technologies, Vol.1, No.2, pp.181-184, 1993.
[18] Lorensen, W. E. and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” in Proc. SIGGRAPH’87, Anaheim, CA, July 27-31, 1987, pp.163-169.
[19] Mastin, G. A., P. A. Watterberg, and J. F. Mareda, “Fourier synthesis of ocean scenes,” IEEE Computer Graphics and Applications, Vol. 7, No. 3, pp.16-23, 1987.
[20] O’Brien, J. F., and J. K. Hodgins, “Dynamic simulation of splashing fluids,” in Proc. Computer Animation’95, Geneva, Switzerland, Apr. 19-21, 1995, pp. 198-205.
[21] Oppenheimer, P., A. Gupta, S. Weghorst, R. Sweet, J. Porter, “The representation of blood flow in endourologic surgical simulations,” in Proc. MMVR2001, Newport Beach, CA, Jan.24-27, 2001, pp.365-371.
[22] Osher, S. and J. A. Sethian, “Fronts propagatin with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physicas, Vol.79, pp.12-49, 1988.
[23] Peachey, D. R., “Modeling waves and surf,” in Proc. SIGGRAPH’86, Dallas, Aug. 18-22, 1986, pp.65-74.
[24] Reeves, W. T., “Particle systems - a technique for modeling a class of fuzzy objects,” Computer Graphics, Vol.17, No.3, pp.359-376, 1983.
[25] Schneider, J. and R. Westermann, “Towards real-time visual simulation of water surfaces,” in Proc. VMV 2001, Stuttgart, Germany, Nov. 21-23, 2001, pp.211-218.
[26] Sederberg, T. W. and S. R. Parry, “Free-form deformation of solid geometric models,” in Proc. SIGGRAPH’86, Vol.20, No.4, Dallas, TX, Aug.18-22, 1986, pp.151-160.
[27] Shinya, M. and A. Fournier, “Stochastic motion – motion under the influence of wind,” in Proc. EUROGRAPHICS’92, Cambridge, UK, Sep. 5-6, 1992, pp. 119-128.
[28] Sims, K., “Particle animation and rendering using data parallel computation,” Computer Graphics, Vol.24, No.4, pp.405-413, 1990.
[29] Stam, J., “Stable fluids,” in Proc. SIGGRAPH’99, Los Angeles, CA, Aug.8-13, 1999, pp.121-128.
[30] Stam, J., “Stochastic dynamics: simulating the effects of turbulence on flexible structures,” in Proc. EUROGRAPHICS’97, Budapest, Hungary, Sep. 4-8, 1997, pp.159-164.
[31] Stam, J., and E. Fiume, “Turbulent wind fields for gaseous phenomena,” in Proc. SIGGRAPH’93, Anaheim, CA, Aug.2-6, 1993, pp.369-376.
[32] Stam, J., “A simple fluid solver based on the FFT,” Journal of Graphics Tools, Vol.6, No.2, pp.43-52, 2002.
[33] Szeliski, R. and D. Tonnesen, “Surface modeling with oriented particles,” in Proc. SIGGRAPH’92, Chicago, July 26-31, 1992, pp.185-194.
[34] Szeliski, R., D. Tonnesen, and D. Terzopoulos, “Modeling surfaces of arbitrary topology with dynamic particles,” in Proc. 1993 IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, Jun. 15-17, 1993, pp.82-87.
[35] Taubin, G., “A signal processing approach to fair surface design,” in Proc. SIGGRAPH’95, Los Angeles, CA, Aug.6-11, 1995, pp.351-358.
[36] Taubin, G., Optimal Surface Smoothing as Filter Design, Research Report, IBM Watson Research Center, Yorktown Heights, NY, March 1996.
[37] Terzopoulos, D., J. Platt, A. Barr, and K. Fleischer, “Elastically deformable models,” in Proc. SIGGRAPH’87, Vol.21, No.4, Anaheim, CA, Jul.27-31, 1987, pp.205-214.
[38] Tessendorf, J., Simulating Ocean Water, SIGGRAPH’00: Course Notes 25: Simulating Nature: From Theory to Practice, New Orleans, Lousiana, Jul.23-28, 2000.
[39] Tonnesen, D., “Modeling liquids and solids using thermal particles,” in Proc. Graphics Interface’’91, Calgary, Alberta, Jun. 3-7, 1991, pp.255-262.
[40] Tonnesen, D., Dynamically Coupled Particle Systems for Geometric Modeling, Reconstruction, and Animation, Ph.D. dissertation, Computer Science Dept., Univ. of Toronto, Toronto, Canada, 1998.
[41] Turner, J. A. and A. C. Mazzone, “Multifluid finite volume Navier-Stokes solutions for realistic fluid animation,” in Proc. SIGGRAPH’99 Programs: Animation & Special Effects: Sketches and Applications, Los Angeles, CA, Aug.8-13, 1999.
[42] Weimer, H. and J. Warren, “Subdivision schemes for fluid flow,” in Proc. SIGGRAPH’99, Los Angeles, CA, Aug.8-13, 1999, pp.111-120.
[43] Witkin, A., Particle System Dynamics, SIGGRAPH’95 Course Notes: An Introduction to Physically Based Modeling, Los Angeles, CA, Aug.6-11, 1995.
[44] Witting, P., “Computational fluid dynamics in a traditional animation environment,” in Proc. SIGGRAPH’99, Los Angeles, CA, Aug.8-13, 1999, pp.129-136.
[45] Yngve, G., J. O’Brien, and J. Hodgins, “Animating explosions,” in Proc. SIGGRAPH’00, New Orleans, Lousiana, Jul.23-28, 2000, pp.29-36.
[46] Zhao, H.-K., S. Osher, and R. Fedkiw, “Fast surface reconstruction using the level set method,” in Proc. IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, July 13, 2001, pp.194-201.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2002-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡