博碩士論文 89522068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.230.154.129
姓名 劉逸群(YiChun Liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 複合式群聚演算法
(A Hybrid Approach to Clustering Algorithms)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 模糊類神經網路為架構之遙測影像分類器設計
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
★ 虹膜辨識系統之研究與實作★ 可攜式手型辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 群聚分析對於分析檢視資料間的複雜結構是一種非常有效的工具,因此它的應用十分的廣泛。然而對於所有群聚分析方法,有兩個問題必須解決:
(1)決定正確的群聚數目
(2)如何採用適當的相似度量測
傳統上第一種的解決方式是增加群聚的數目,然後合併群聚,配合特定的驗證函數,以再分裂方式得到理想的群聚數目,但是這種方法的缺點是必須耗費大量的計算時間。第二個問題在於不同的資料,其幾何結構不盡相同,因此,無法使用同一種相似度量測,並且採用不同的相似度量測會影響到分群的結果。而群聚分析傳統的處理方法上幾乎是使用歐幾里德距離作為相似度量測方法,但事實上,有許多複雜的結構使用歐幾里德距離並無法獲得令人滿意的結果。
本論文提出一個新的演算法結合階層式分群演算法與適應性共振理論的優點不僅針對群聚數目的決定提供了一個合理的解決方法,並且對於處理任意形狀分布的群集有很好的效果。我們使用了許多的資料集來測試所提出的方法,彰顯我們提出的方法相較於其他演算法的過人之處。
摘要(英) Clustering algorithms are effective tools for exploring the structures of complex data sets, therefore, are of great value in a number of applications. For most of clustering algorithms, two crucial problems required to be solved are
(1) the determining of the optimal number of clusters
(2) the determining of the similarity measure based on which patterns are assigned to corresponding clusters.
The estimation of the number of clusters in the data set is the so-called cluster validity problem. Conventional approaches to solving the cluster validity problem usually involves increasing the number of clusters, and/or merging the existing clusters, computing some certain cluster validity measures in each run, until partition into optimal number of clusters is obtained. Since most validity measures usually assume a certain geometrical structure in cluster shapes, these approaches fail to estimate the correct number of clusters in real data with a large variety of distributions within and between clusters. The second crucial problem faces a similar situation. While it is easy to consider the idea of a data cluster on a rather informal basis, it is very difficult to give a formal and universal definition of a cluster. Most of the conventional clustering methods assume that patterns having similar locations or constant density create a single cluster. In order to mathematically identify clusters in a data set, it is usually necessary to first define a measure of similarity or proximity which will establish a rule for assigning patterns to the domain of a particular cluster center. As it is to be expected, the measure of similarity is problem dependent. That is, different similarity measures
will result in different clustering results.
In this paper, we propose a hierarchical approach to ART-like clustering algorithm which is able to deal with data consisting of arbitrarily geometrical-shaped clusters. Combining hierarchical and ART-like clustering is suggested as a natural feasible solution to the two problems of determining the number of clusters and clustering data.
關鍵字(中) ★ 類神經網路
★ 群聚分析
關鍵字(英) ★ Neural Network
★ Clustering Analysis
★ Hierarchica
論文目次 第一章 緒論 1
1.1研究動機 1
1.2論文架構 3
第二章 群聚分析 4
2.1分群 4
2.2群聚分析的工具 10
2.2.1 K-means法則 11
2.2.2競爭式學習法則 12
2.2.3適應性共振理論 (ART Clustering) 15
2.2.4階層式分群 (Hierarchical Clustering Analysis) 18
第三章 複合式群聚演算法 21
3.1引言 21
3.2使用二次鍵結的類神經網路 26
3.3複合式群聚演算法 28
3.3.1 學習演算法 28
3.3.2 改良方法 31
第四章 模擬結果之比較分析 32
4.1前言 32
4.2例一:二維資料集之測試與比較 32
4.3例二:十維資料之測試與比較 52
4.4例三:圓形物體偵測之測試與比較 54
4.5例四:染色體偵測之測試與比較 59
4.6實驗結果分析 64
第五章 結論與展望 65
參考文獻 66
參考文獻 [1] G. H. Ball and D. J. Hall, “Some fundamental concepts and synthesis procedures for pattern recognition preprocessors,” International Conf. on Microwaves, Circuit Theory, and Information Theory, Tokyo, Sep, 1964.
[2] G. Bartifai, “An ART-based modular architecture for learning hierarchical clusterings. Neurocomputing,” vol.13, no. 1, pp. 31-46, September 1996.
[3] G. Bartfai and R. White, ”Learning and optimisation of hierarchical clusterings with ART-based modular networks,” IEEE International Joint Conference, vol. 3, pp. 2352 -2356, 1998.
[4] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum, 1981.
[5] J. C. Bezdek, Fuzzy Mathematics in Pattern Classification, Ph.D Thesis, Cornell University, 1973.
[6] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Proc, vol. 37, pp. 54-115, 1987.
[7] G. A. Carpenter and S. Grossberg, “ART2: self-organization of stable category recognition codes for analog input patterns,” Appl. Optics, vol. 26, no. 23, pp. 4919-4930, Dec. 1987.
[8] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Networks,” Neural Networks, vol. 4, pp. 565-588, 1991.
[9] G. A. Carpenter, S. Grossberg,, N. Markuzon, J. H. Reynolds, and D. B. Rosen, “Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps,” IEEE Trans. on Neural Networks, vol. 3, pp. 698-710, 1992.
[10] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System,” Neural Networks, vol. 4, pp. 759-771, 1991.
[11] W. C. Chang, “On using principal components before separating a mixture of two multivariate normal distribution,” Applied Statistics, vol. 32, pp. 267-275, 1983.
[12] R. N. Dave, “Fuzzy Shell-Clustering and Application to Circle Detection in Digital Images,” Intern. Journal of General Systems, vol. 16, pp. 343-355, 1990.
[13] R. N. Dave, “Use of the Adaptive Fuzzy Clustering Algorithm to
Detect lines in Digital Images,” Intell. Robots Comput Vision VIII, vol. 1192, pp. 600-611, Nov. 1989.
[14] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, pp. 224-227, 1979.
[15] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, New York: Wiley, 1973.
[16] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well-Separated Clusters,” Journal Cybern., vol. 3, no. 3, pp. 32-57, 1973.
[17] T. Eltoft, and R. J. P. deFigueiredo, “A new neural network for cluster-detection-and-labeling,” IEEE Trans. on Neural Networks, vol. 9, no. 5, pp 1021-1035, September 1998.
[18] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, Inc., New York, 1972.
[19] K. Fukushima, Cognitron: “A Self-Organizing Multilayered Neural Network, Biological Cybernetics,” vol. 20, pp. 121-136, 1975.
[20] I. Gath, A. B. Geva, “Unsupervised Optimal Fuzzy Clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, pp. 773-781, 1989.
[21] A. B. Geva, “Hierarchical Unsupervised Fuzzy Clustering,” IEEE Trans. on Fuzzy Systems, vol. 7, no. 4, pp723-733, Dec. 1999.
[22] S. Grossberg, “Adaptive Pattern Classification and Universal Recoding: I. Parallel Development and Coding of Neural Feature Dectors,” Biological Cybernetics, vol. 23, pp. 121-134, 1976.
[23] D. E. Gustafson, and W. C. Kessel, “Fuzzy Clustering with a Fuzzy Covariance Matrix,” Proc. IEEE Conf. Decision Contr., San Diego, CA, pp. 761-766, 1979.
[24] K. Ishihara, S. Ishihafa, M. Nagamachi, and Y. Matsubara. “arboART: ART based hierarchical clustering and its application to questionnaire data analysis,” In Proceedings of the IEEE International Conference on Neural Networks, vol.1, pp. 532-537, 1995.
[25] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentic Hall, New Jersey, 1988.
[26] B. Kleiner, and J. A. Hartigan. “Representing points in many dimensions by trees and castles.” Journal of the American Statistical Association 76, 260-269, 1981.
[27] T. Kohonen, Self-Organization and Associative Memory, 3rd ed. New York, Berlin: Springer-Verlag, 1989.
[28] T. Kohonen, The ‘Neural’ Phonetic Typewritter, IEEE Computer, vol. 27, no. 3, pp. 11-12, 1988.
[29] R. Krishnapuram and J. Kim, “A Note on the Gustafson-Kessel and Adaptive Fuzzy Clustering Algorithms,” IEEE Trans. on Fuzzy Systems, vol. 7, no. 4, pp. 453-461, August, 1999.
[30] R. C. T. Lee, J. R. Slagle, and H. Blum, “A triangulation method for the sequential mapping of points from N-space to two-space,” IEEE Trans. on Computers, vol. 26, pp. 288-292, 1977.
[31] G. W. Milligan and M. C. Cooper, “An examination of procedures for determining the number of clusters in a data set,” Psychometrika, vol. 50, pp. 159-179.
[32] F. Rosenblatt, Principles of Neurodynamics, New York: Spartan, 1962.
[33] D. E. Rumelhart and D. Zipser, “Feature Discovery by Competitive Learning, Cognitive Science,” vol. 9, pp. 75-112, 1985.
[34] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans. on Computers, vol 18, pp. 401-409, 1969.
[35] M. C. Su and H. C. Chang, “A new model of self-organizing neural networks and its application in data projection,” IEEE Trans. on Neural Networks, 12, no. 1, pp. 153-158, January 2001.
[36] M. C. Su and C. H. Chou, “A Competitive Learning Algorithm Using Symmetry,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol. E82-A, no. 4, pp. 680-687, 1999.
[37] M. C. Su and C. H. Chou, “A Modified Version of the K-Means Algorithm with a Distance Based on Cluster Symmetry,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 674-680, June 2001.
[38] M. C. Su and T. K. Liu, “Application of Neural Networks using Quadratic Junctions in Cluster Analysis,” Neurocomputing, vol. 37, pp. 165-175, 2001.
[39] Ch. von der Malsburg, “Self-Organization of Orientation Sensitive Cells in the Striate Cortex,” Kybernetik, vol. 14, pp. 85-100, 1973.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2002-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明