博碩士論文 89541011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.92.92.168
姓名 胡明智(Ming-Jyh Hwu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 電子束微影技術於深次微米異質 結構場效應電晶體元件之應用
(Electron Beam Lithography Technology for the Application of Deep Sub-micron Heterostructure Field-Effect Transistors )
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
通道摻雜異質接面場效應電晶體具有高電流推動能力,以及元件功率特性及效能。由於此高電流推動能力及熱穩定性,因此廣泛地應用在微波功率元件及高速元件上。
然而閘極漏電流經常限制了通道摻雜異質接面場效應電晶體元件的功率特性,由其在高輸入功率時。先我們利用鐠金屬來加入鈦/金金屬閘極的製作,來改良元件之閘極漏電流,進而改善整體元件功率特性及效能。
為了要大幅度增加功率元件的崩潰特性,多數製程採用雙重曝光暨雙重閘極蝕刻來改善元件崩潰電壓之特性,我們利用電子束微影設備來開發單次直寫微影技術配合乾蝕刻及溼蝕刻的雙重掘入技術來改善銦砷化磷-銦砷化鎵通道摻雜場效應電晶體的輸出功率特性。
最後,我們利用埋入式鉑金屬技術來製作增強及空乏型深次微米T型閘極異質結構鋁砷化鎵-銦砷化鎵電晶體,進行一系列元件直流,高頻,以及功率方面之研究。接著我們完成增強及空乏型反相器及差動式放大器電路。
摘要(英) ABSTRACT
Doped-channel heterostructure field-effect transistors (DCFETs) with a high current density and superior microwave power performance was developed and characterized. Due to its excellent current driving capability and thermal stability, it has been widely investigated for microwave power devices and high-speed devices.
However, gate leakage current always limits the power performance of DCFETs devices especially under a high input power swing. We interested in improving the Schottky gate performance by inserting a thin praseodymium (Pr) metal layer on the bottom of conventional Ti/Au gate in AlGaAs/InGaAs DCFET fabrication. We suppress the gate leakage current and enhance microwave power performance by Pr metal gate deposition.
In chapter 3, we use the single exposure e-beam direct writing method plus the selective wet and dry etchings to fabricate double-recessed DCFETs (DR-DCFETs) and to improve device power performance. The 0.2 µm gate length InGaP/InGaAs DR-DCFET was developed and characterized.
In chapter 4, we fabricated enhancement/depletion-mode AlGaAs/InGaAs sub-micron T-shape gate HEMTs by buried-Pt technique. The 0.2 µm gate length E-mode and D-mode AlGaAs/InGaAs HEMTs were developed and characterized. The dc, rf, and microwave power performance of the device will be presented. Furthermore, the E/D-Mode circuit was demonstrated, including inverter and differential amplifier.
關鍵字(中) ★ 場效應電晶體
★ 電子束微影技術
關鍵字(英) ★ Field-Effect Transistors
★ Electron Beam Lithography
論文目次 CHINESE ABSTRACT I
ABSTRACT II
FIGURE CAPTIONS XI
TABLE CAPTIONS IX
CHAPTER 1 INTRODUCTION
1.1 Overview of Field Effect Transistors 1
1.2 Objective and overview of The Dissertation 3
CHAPTER 2 IMPROVED GATE LEAKAGE AND MICROWAVE POWER PERFORMANCE BY INSERTING A THIN PRASEODYMIUM GATE METAL LAYER IN AlGaAs/InGaAs DCFETs
2.1 Introduction 7
2.2 Mechanism of Pr Gate Metal Deposition 8
2.3 Device Structures and Fabrication 11
2.4. Device Characterization and Gate-Leakage Improvement by Pr Gate metal
2.4.1 Schottky Barrier Height measurement 14
2.4.2 Dc Characterization and Gate-Leakage Improvement by Pr Gate metal 15
2.4.3 Rf Characterization 19
2.5 Theory of Load and Source Pull Microwave Power Measurement 23
2.6 Device Microwave Power Performance 27
2.7 Conclusions 29
CHAPTER 3 A NOVEL DOUBLE-RECESSED 0.2 μm T-GATE PROCESS FOR HETEROSTRUCTURE InGaP/InGaAs DCFETs FABRICATION
3.1 Introduction 30
3.2 The E-beam Lithography with Four-layers Photoresist
3.2.1The E-beam Lithography System 31
3.2.2 Four-layers Photoresist 37
3.3 Device Structure and Fabrication 42
3.4 Double-recessed DCFETs dc Characteristic 46 3.5 Microwave Power Enhancement by Double-Recessed Gate 48
3.6 Conclusions 51
CHAPTER 4 FABRICATION OF ENHANCEMENT/DEPLETION-MODE AlGaAs/InGaAs PSEDOMORPHIC HEMTs BY BURIED-PT GATE TECHNIQUE
4.1 Introduction 52
4.2 Device Structures and Fabrication Procedures 53
4.3 Dc Characteristics of the E-Mode and D-Mode HEMTs 57
4.4 Microwave Power Characteristic of the E-Mode and D-Mode HEMTs 61
4.5 Model of E-Mode AlGaAs/InGaAs HEMTs
4.5.1 Device Small-Signal Element Extraction 65
4.5.2 Device Large-Signal Model Establishment 73
4.6 E/D-Mode circuit demonstration 75
4.7 Conclusions 82
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES
5.1 Conclusions 83
5.2 Suggestions for Future Studies 84
REFERENCES 85
PUBLICATIONS 89
參考文獻 [1] H. Craig Casey, JR., Device for integrated circuits, John Wiley & Sons.
[2] P. N. Tung, P. Delescluse, D. Delagebeaudeuf, M. Laviorn, J. Chaplart and N. T. Linh, Elecrtron. Lett., vol. 18, pp.517, 1982.
[3] M. Laviorn, D. Delagebeaudeuf, P. Delescluse, J. Chaplart and N. T. Linh, Electron. Lett., vol. 17, pp.536, 1981.
[4] T. Henderson, M. I. Aksun, C. K. Peng, H. Morkoc, P. C. Chao, P. M. Smith, K. -H. G. Duh and L. F. Fester, IEEE Trans. Electron Devices, vol. 7, pp. 649, 1986.
[5] Y. L. Lai, E. Y. Chang, C. Y. Chang, T. K. Chen, T. H. Liu, S. P. Wang, T. H. Chen, C. T. Lee, IEEE Electron Device Lett., vol. 17, pp. 229-231, 1996.
[6] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, Y. K. Chen, IEEE Electron Device Lett., vol. 18, pp. 550-552, 1997.
[7] M. T. Yang, and Y. J. Chan, IEEE Trans. Electron Devices, vol. 43, pp. 1174-1180, 1996.
[8] M. T. Yang, Ph.D Dissertation, National Central University, 1995.
[9] S. M. Sze, High speed semiconductor device, Murray Hill, New jersey pp. 316,1990.
[10] H. C. Chiu, S. C. Yang and Y. J. Chan, IEEE Electron Device Lett., vol. 23, pp. 1-3, 2002.
[11] L.W. Yin, Y. Hwang, J. H. Lee, R. M. Kolbas, R. J. Trew, and U. K. Mishra, IEEE Electron Device Lett., vol. 11, pp. 561-563, 1990.
[12] Y. Okamoto, K. Matsunaga, and M. Kuzuhara, Electron Lett., vol. 31, pp. 2216-2218, 1995.
[13] W. S. Lour, J. H. Tasi, L. W. Laih and W. C. Lui,, IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[14] J. P. Lin, M. J. Hwu and L. B. Chang, Jpn. J. Appl. Phys. vol. 37, pp. 1437-1439, 1998.
[15] N. Iwata, K. Inosako, and M. Kuzuhara, IEEE MTT-S Int. Microwave Symp. Dig.,
pp. 1465, 1993.
[16] Ren, F., Hong, M.W., Hobson, W.S., Kuo, J.M., Lothian, J.R., Mannaerts, J.P., Kwo, J., Chen, Y.K., Cho, A.Y, IEDM Tech. Digest,( 1996) 943.
[17] H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, ,IEEE Electron Device Lett., vol. 23, no.1, pp. 1-3, 2002.
[18] J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. Lyman, L. Aucoin, A. Miquelarena, C. Bendard, and D. Atwood,, IEEE Electron Device Lett., vol. 14, pp. 456-458, 1993.
[19] R. J. Trew and U. K. Mishra, IEEE Electron Device Lett., vol. 12, pp. 524-526, 1991.
[20] R. Grundbacher, I. Adesida, Y. C. Kao and A. A. Ketterson, , J. Vac. Sci., Tech. B 15(1), pp 49 –53, 1997.
[21] M. Hatzakis, J. Electrochem. Soc. 116, 1033-1037, 1969.
[22] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume I, SPIE.
[23] P. C. Chao, P. M. Smith, S. C. Palmateer, J. C. M. Hwang, IEEE Trans. Electron Devices, vol. 32, pp. 1042-1046, 1985.
[24] T. Enoki, Y. Ishii, T. Tamamura, Intl. Conf. on InP and Related Materials, pp. 371-376, Japan, 1991.
[25] K. H. G. Duh, P. C. Chao, S. M. J. Liu, P. Ho, M.Y. Kao, J. M Ballingall, IEEE Microwave and Guided Wave Lett, pp. 114-116, 1991.
[26] F. Robin, H. Meier, O. J. Homan and W. Bachtold, , Intl. Conf. on InP and Related Materials, pp. 221 -224, 2002.
[27] S.C. Yang, H.C. Chiu, F.T. Chien, Y.J. Chan and J.M. Kuo, IEEE Electron Device Lett., vol. 22, pp. 170-172, 2001.
[28] D. G. Ballegeer, I. Adesida, C. Caneau, and R. Bhat, Int. Conf. InP and Related Materials, pp. 331–334, 1994.
[29] N. Harada, S. Kuroda, and K. Hikosaka, , IEIC Trans., vol. 10, pp. 1165-1171, 1992.
[30] N. Harada, S. Kuroda, Y. Watanabe, and K. Hikosaka, Electron Lett., vol. 29, pp. 2100-2101, 1993.
[31] A. Mahajan, P. Fay, M. Arafa, and I. Adesida, IEEE Trans. Electron Devices, vol. 45, pp. 338-340, 1998.
[32] Kevin J. Chen, Takatomo Enoki, Koichi Maezawa, Kunihiro Arai and Masafumi Yamamoto, IEEE Trans. Electron Devices, vol. 43, pp. 252-257, 1996.
[33] A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Adesida, IEEE Electron Devices Lett., vol. 18, pp. 284-286, 1997.
[34]D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, I. Adesida, IEEE Electron Devices Lett., vol. 22, pp. 364-366, 2001.
[35] L. Tang et al, IEEE Electron Device Lett., vol. 7, pp. 75-77, 1985.
[36] R. Anholt, S. Swirhun, IEEE Trans. Microwave Theory Tech. Vol. 39 pp.1243~1247, 1991.
[37] G. Dambrine et al, IEEE Trans. Microwave Theory Tech. vol. 36, pp.1511~1519, 1988.
[38] W. Curtice, M. Ettenberg. IEEE Trans. Microwave Theory Tech. pp.1383~1394, 1985.
[39] C. K. Lin, Mater Dissertation, National Central University, 2001.
[40] M. Berroth, R. Bosch, IEEE Trans. Microwave Theory Tech. Vol. 38 pp.891~895, 1990.
[41] S. M. Sze, High speed semiconductor device, Murray Hill, New jersey pp. 224,1990.
[42] H. C. Chiu, Ph. D. Dissertation, National Central University, 2003.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2004-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明