博碩士論文 89622001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.221.154.151
姓名 顏銀桐(Yin-Tung Yen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈
(Slip Distribution of Mw ≧6.0 aftershocks of the 1999 Chi-Chi,Taiwan, Earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震★ 九二一集集地震三維震源過程與震波傳遞分析
★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型★ 集集地震之震前、同震及震後變形模式研究
★ 台灣地震震源尺度分析:2003年規模>6.0地震分析★ 使用震源機制逆推台灣地區應力分區狀況
★ 地震水井水力學之理論模式改良與發展及同震水位資料分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性★ 中大規模地震斷層參數之同步求解
★ 集集地震同震及震後應力演化與地震活動之相關性★ 2005 年宜蘭雙主震之震源破裂滑移分析
★ 1999 集集地震後之黏彈性鬆弛效應★ 台灣地區大型地震產生的庫倫應力變化與地震活動相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999年9月21日1時47分,在台灣中部發生了芮式規模7.3的強烈地震,座落於一西部逆衝帶上的典型逆衝斷層導致此次地震。自從921集集大地震之後,餘震頻頻不斷,範圍幾乎遍佈了整個台灣中部區域。此次研究之規模大於六以上的餘震為格林威治標準時間(GMT)1999年9月20日18時3分、18時11分、18時16分、21時46分發生之四個餘震,以及另外9月22日0時14分及9月25日23時52分之二個餘震。氣象局在短時間內定出位置、規模和深度,而六百多個自由強震站記錄也同時在地震發生後即馬上紀錄,提供了研究這些餘震的波形資料。此外,中央研究院BATS(Broadband Array In Taiwan For Seismology)觀測網也經由Kao and Chen(2000)透過地震矩張量逆推同時解得震源深度及震源機制,本研究也利用其結果作為理論計算上之基本參數。利用Takeo採用結合Kennett and Kerry(1979)的反射、透射係數矩陣(Reflection-Transmiission coefficient matrix method)與Bouchon(1981)的離散波數法(Discrtet-Wavenumber method),計算出假設在水平地層內一點震源所有全波形之理論格林函數並加進震源機制後推算出理論位移波形。於斷層模型上採Finite fault approach,將一個有限斷層其看待為許多子斷層所構成,假設一測站的相關參數所計算之理論波形,則為所有子斷層的貢獻的疊加波形。以此觀念,計算出選取測站之理論波形,並和實際波形進一步採用Mori and Hertzell(1990)發展的逆推方法計算出斷層面上的錯動量分佈。
所求得之結果分別為:Af1 – 主要錯動區域在震源周圍範圍,傾向往西南破裂,最大錯動量分別約為 7.6 m(P043)及 9 m(P197);Af2 – 主要錯動區域在震源東邊區域,往下方破裂,最大錯動量分別約為125 cm(P229)及125 cm(P313);Af3 – 主要錯動區域在震源北邊範圍,最大錯動量分別約為150 cm(P336)及150 cm(P189);Af4 – 主要錯動區域在震源西北邊範圍,傾向下方破裂,最大錯動量分別約為8 m(P085)及 7 m(P353);Af5 – 主要錯動區域在震源南邊範圍,最大錯動量分別約為250 cm(P324)及 180 cm(P194);Af6 – 主要錯動區域在震源西南範圍,最大錯動量分別約為 380 cm(P042)及 424 cm(P188)。
而研究中也歸納出,在考量測站包覆性下選取較遠測站時,速度構造分區是應該被考慮的。另外,將921主震錯動量分佈結果做相關比較結果,六個餘震之破裂區大致分佈於主震幾乎無錯動量之區域,向西逆衝之斷層面相對於另一斷層面有著較小的擬合誤差解,與西部逆衝構造有著構造上的一致性。
摘要(英) We investigate the waveforms of several Mw ³6.0 aftershocks to examine the corresponding fault geometry and the distribution of slip on the fault of the aftershocks. The time points and locations that certainly happened in our investigated aftershocks are very close to each other. As a result, those aftershocks are mixed up and fault range and plane are difficult to be defined.
One objective of this investigation is to obtain the distributions of slip of several (Mw ³6.0) aftershocks of Chi-Chi earthquake. In the aspect of synthetic waveform, we use the following steps to obtain. First, a fault plane was discretized into many subfaults to imply a finite fault. Then we calculate the point source response on the subfaults and combine all subfaults response. The point source responses for the strong motion synthetics are computed using a layered velocity structure with a frequency-wavenumber integration scheme.
In addition, linear least-square inversion procedure that is adopted by Hartzwll and Heaton (1983) could obtain the subfaults dislocations when the best fit to the displacement waveforms between observation and synthetic could be got. A matrix of smoothing constraints also are taken into consideration. The transverse component of the Taiwan strong-motion stations (TSMIP) was used to analyze with detrend and intergrated twice the accelograms to displacements. These aftershocks are located in the eastern of Central Mountain Ranges and there are rare stations there. We must select more information from farther stations to carry analyses out, hence the velocity structure is considered attentive.
The results from these aftershocks will thus be related to the mainshock to understand the general picture of the Chi-Chi earthquake sequence.
關鍵字(中) ★ 921
★ 震源破裂
★ 波形逆推
關鍵字(英) ★ 921
★ slip
★ inversion
論文目次 目 錄
  頁碼
論文提要 ………………………………………………………………. i
致謝 ……………………………………………………………………. ii
目錄 ………………………………………………..………………….. iii
圖目 ……………………………………………………………….….... v
表目 …………………………………………………………………… xi
第一章 緒論 ……………………………………………………..……. 1
1.1研究動機 ………………………………………………………... 1
1.2 文獻回顧 ………………………………………………….……. 5
1.2.1 震源響應與有限斷層 ……………………………….……. 5
1.2.2 波形逆推 ………………………………………………….. 7
1.2.3 研究區域地質背景與地體構造 ………………………….. 9
1.3 本文內容 ……………………………………………………… 10
第二章 研究方法 ……………………………………………………. 13
2.1理論地震波之計算 ……………………………………………. 13
2.2 逆推方法 ……………………………………………………… 19
第三章 資料收集及理論計算設定之相關參數 ………………….… 23
3.1 資料內容與處理 ……………………………………………… 23
3.2 相關基本參數 ………………………………………………… 27
3.2.1 震源機制及震源深度 …………………………………… 27
3.2.2 斷層面幾何 ……………………………………………… 27
3.2.3 速度構造 ………………………………………………… 28
3.2.4 震源時間函數 …………………………………………… 28
第四章 逆推結果 ……………………………………………………. 31
4.1 1999年9月20日18時03分(GMT)地震 …………….. 33
4.1.1 P023之結果 …………………………………………….. 34
4.1.2 P197之結果 …………………………………………….. 39
4.1.3 震源破裂分佈型態 ……………………………………… 41
4.2 1999年9月20日18時11分(GMT)地震 ……………… 41
4.2.1 P209之結果 ……………………………………………... 46
4.2.2 P303之結果 ……………………………………………... 50
4.2.3 震源破裂分佈型態 ……………………………………… 54
4.3 1999年9月20日18時16分(GMT)地震 ……………… 59
4.3.1 P336之結果 ……………………………………………... 59
4.3.2 P189之結果 ……………………………………………... 63
4.3.3 震源破裂分佈型態 ……………………………………… 66
4.4 1999年9月20日21時46分(GMT)地震 ……………… 66
4.4.1 P075之結果 ……………………………………………... 71
4.4.2 P343之結果 ……………………………………………... 77
4.4.3 震源破裂分佈型態 ……………………………………… 77
4.5 1999年9月22日00時14分(GMT)地震 ………………... 82
4.5.1 P314之結果 ……………………………………………... 87
4.5.2 P184之結果 ……………………………………………... 87
4.5.3 震源破裂分佈型態 ……………………………………… 90
4.6 1999年9月25日23時52分(GMT)地震 ………………... 95
4.6.1 P032之結果 ………………………………………………95
4.6.2 P198之結果 ……………………………………………... 99
第五章 結果與討論 ………………………………………………... 107
5.1 討論 …………………………………………..…………….. 107
5.1.1 震源機制 ……………………………………………….. 107
5.1.2 速度構造 ……………………………………………….. 108
5.1.3 場址效應 ……………………………………………….. 109
5.2 錯動量分佈結果 …………………………………………… 109
參考文獻 ……………………………………………………………. 117
英文摘要 ……………………………………………………………. 122
參考文獻 參考文獻
Alekseev, A. S. and B. G. Mikhailenkl, 1980. The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference models, Geophys. J., 48, 161-172.
Beroza G. C. , 1988. Linearized inversion for fault rupture behavior : application to the 1984 Morgan Hill, California, Earthquake. J. Geophys. Re., 93, 6275-6296.
Bouchon M., 1981. A simple method to calculate greens functions for elastic layered media. Bull. Seism. Soc. Am., 71, 959-971.
Cohee B. P. and G. C. Beroza, 1994. Slip distribution of the 1992 Landers Earthquake and its implications for earthquake source mechanics. Bull. Seism. Soc. Am., 84, 692-712.
Fush, K. and G. Müller. 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. astr. Soc. 23, 417-433.
Gilbert, F. and D. V. Helmberger, 1972. Generalized ray theory for a layered sphere, Geopys. J., 27, 57-80.
Hartzell S. H. and T. H. Heaton, 1983. Inversion of strong ground motion and teleseismic wavefrom data for the fault rupture history of the 1979 Imperial Valley, California, Earthquake. Bull. Seism. Soc. Am., 73, 1553-1583.
Hartzell S. H. and T. H. Heaton, 1986. Rupture history of the 1984 Mogran Hill, California, earthquake from the inversion of strong motion records. Bull. Seism. Soc. Am., 76, 649-674.
Hartzell S. H., 1989. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Spring, California, earthquake. J. Geophys. Res., 94, 7515-7534.
Hartzell S. H. and D. V. Helmberger, 1982. Strong-motion modeling of the Imperial Valley earthquake of 1979. Bull. Seism. Soc. Am., 72, 571-596.
Hartzell S. H., 1990. Source complexity of the 1987 Whittier Narrows, California, earthquake from the inversion of strong motion records. J. Geophys. Res., 95, 12475-12485
Hartzell S. H., C. Langer, and C. Mendoza, 1994. Rupture histories of eastern north American earthquakes. Bull. Seism. Soc. Am. 84, 1703-1724.
Helmberger, D. V. 1974. Generalized ray theory for shear dislocation. Bull. Seism. Soc. Am. 64, 45-64.
Herrmann, R. B., 1979. SH-wave generation by dislocation source – A numerical study. Bull. Seism. Soc. Am. 69, 1-15.
Kanamori H. and G. S. Stewart, 1978. Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophy. Res., 83, 3427-3434.
Kao H. and W. P. Chen, 2000. The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan. Science., 288, 2346-2349.
Kennett, B. L. N., 1975. The effects of attenuation on seismograms, Bull. Seism. Soc. Am., 65, 1643-1651.
Kennett, and N. J. Kerry, 1979. Seismic waves in a stratified half space,
Geophys. J. R. astr . Soc. 57, 557-583.
King, G. C.P., R. S. Stein, and J. Lin, 1994: Static stress changes and the triggering of earthquake. Bull. Seism. Soc. Am., 84, 935-953.
Langstan, C. A. and D. V. Helmberger, 1975. A procedure for modeling shallow dislocation sources, Geophys. J. ,42, 117-130.
Lee S. T. and K. F. Ma.,2000. Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data. TAO., 11, 591-608.
Liu K. S., T. C. Shin and Y. B. Tsai, 1999. A free-field strong motion network in Taiwan: TSMIP. TAO., 10, 377-396.
Ma, K. F. and J. Mori, 1998. Rupture process of the June 25, 1995 I-Lan earthquake. Symposium on Taiwan strong motion instrumentation program(III)., 141-143.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and Jim Mori, 1999. The Chi-Chi, Taiwan earthquake: Large surface displacements on inland thrust faults., EOS, 80, 605-611.
Ma, K. F., T. R. Song, S. J. Lee, and S. I. Wu, 2000. Spatial slip distribution of the September 20, 1999, Chi-Chi Taiwan earthquake: inverted from teleseismic data, Geophy. Res. Lett., 27, 3417-3420.
Ma K. F., J. Mori, S. J. Lee, and S. B. Yu, 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1069-1087.
Mendoza C. and S. Hartzell, 1999. Fault-slip distribution of the 1995 Colima-Jalisco, Mexico, earthuake. Bull. Seism. Soc. Am. , 89, 1338-1344.
Mori J. and S. Hartzell, 1990. Source inversion of the 1988 Upland, California, earthquake: Determination of a Fault Plane for a Small Event. Bull. Seism. Soc. Am., 80, 507-518.
Olson A. H. and R. J. Apsel, 1982. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seism. Soc. Am., 72, 1969-2001.
Olson, A. H., J. Orcutt and G. Frazier, 1984. The discrete wavenumber/finite element method for synthetic seismograms, Geophys. J. R. Astron. Soc., 77, 421-460.
Seno, T., T. Moriyama, S. Stein, D. F. Woods,C. Demets, D. Argus, R. Gordon, 1987. Redetermination of the Philippine Sea Plate motion (abstract), Eos Trans. AGU, 68, 1474.
Spudich, P and L. N. Frazer, 1984. Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seism. Soc. Am., 74, 2061-2082.
Steidl J. H., R. J. Archuleta, and S. H. Hartzell, 1991. Rupture history of the 1989 Loma Prieta, California, Earthquake. Bull. Seism. Soc. Am., 81, 1573-1602.
Takeo M., 1987. An inversion method to analyze the rupture processes of earthquakes using near-field seismograms. Bull. Seism. Soc. Am., 77, 490-513.
Wald D. J., D. V. Helmberger, and T. H. Heaton, 1991. Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data. Bull. Seism. Soc. Am., 81, 1540-1572.
Wald D. J. and T. H. Heaton, 1994. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seism. Soc. Am., 84, 668-691.
Wang, C. Y. and R. B. Hermann, 1980. Anumerical strudy of P-, SV- and SH-wave generation in a plane layered medium. Bull. Seism. Soc. Am. 70, 1015-1036.
Well, D. L. and K. J. Coppersmith, 1994. New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am. 84, 974-1002.
Wu C., M. Takeo, and S. Ide, 2001. Source process of the Chi-Chi earthquake: a joint inversion of strong motion data and global positioning system data with a multifault model. Bull. Seism. Soc. Am., 91, 1128-1143.
Yagi Y. and M. Kikuchi, 1999. Spatiotempoal distribution of aource rupture process for Taiwan earthquake (Ms=7.7), submit to Geophys Res. Lett., at http://wwweic.eri.u-tokyo.ac.jp/yuji/taiwan/taiwan.html.
Yao, Z. X. and D. G. Harkrider, 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bull. Seism. Soc. Am., 73, 1685-1699.
Zeng Y. and C. H. Chen, 2001. Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1088-1098.
何春蓀, 1976. 台灣西部的麓山構造。台灣省地質調查所彙刊, 第二十五號, 9-28頁。
何美儀, 1994. 台灣西部地區三維速度構造, 國立中央大學地球物理研究所碩士論文.
周念平, 1990. 一九七八年七月二十三日蘭嶼地震震源破裂過程之逆推, 國立中央大學地球物理研究所碩士論文.
吳典諺, 1999. 一九九六年九月五日蘭嶼地震震源破裂過程, 國立中央大學地球物理研究所碩士論文.
吳相儀, 2000. 台灣地區中大型地震震源參數分析, 國立中央大學地球物理研究所碩士論文.
洪明志, 1998 利用強震網資料探討1996年7月6日屏東地震之震源特性, 國立中央大學地球物理研究所碩士論文.
黃文紀, 1989. 嘉南地區地震震源特性之研究, 國立中央大學地球物理研究所博士論文.
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2002-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明