博碩士論文 89622003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.215.182.36
姓名 賴雅娟(Ya-chuan Lai)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 利用表面波探討造山帶地區的非均向性構造:以台灣及西藏高原為例
(Seismic anisotropy beneath the orogeny from surface-wave analyses: The observations in Taiwan and the Tibetan Plateau)
相關論文
★ 苗栗地區之重力研究★ 利用重力資料估算台灣海峽之莫霍面深度
★ 台灣西南部地區地震釋放之能量與規模關係之研究★ 重力地形修正之探討
★ 利用地磁資料探討磁暴現象★ 大屯火山群之三維速度構造
★ 屏東麓山帶之地震觀測★ 利用線形地震陣列探討台灣中南部之二維構造
★ 台灣中部二維密度構造之探討★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 台東地區三維速度構造★ 利用重力資料探討台中盆地與埔里盆地之二維地下構造
★ 利用接收函數法分析台灣深部地殼構造★ 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究
★ 台灣地區全磁場時空變化之研究(1989-2004年)★ 遠近地震所引起地下水位變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用陣列方法及短距離雙站分析方法,分析寬頻地震紀錄的基態表面波相速度,討論西藏及台灣造山帶地區的非均向性構造,以期瞭解地下地層在造山運動過程中的應力應變情形。西藏高原由數個構造組成,其中最主要的構造為南部的拉薩地塊和北部的羌塘地塊,兩者以班公怒江縫合帶分界。本研究分析南北地塊的基態雷力波及洛夫波,結果顯示兩者的相速頻散曲線特徵及剪力波速度模型有相當大的差異,拉薩地塊為正常的地殼平均速度且偏高的上部地函速度,而羌塘地塊為偏低的地殼速度及上部地函速度,以及高達0.3的泊松比,這些特徵表示拉薩地塊為低溫高速的地層,羌塘地塊則處於高溫的環境。另外,地層的徑向非均向性分布也有相當差異,拉薩地塊分布在中部至下部地殼,與該區域普遍觀測到的低電阻及高熱流值相關,暗示拉薩地塊的地殼非均向性來自地層的裂隙或者水平的熔融地層。羌塘地塊非均向性分布在上部地函,應與地層橄欖石受擠壓時長軸在水平方向排列有關。整體而言,利用表面波分析的剪力波速度及徑向非均性分布,高速且均向的拉薩地塊上部地函應為低溫且沒有變形的隱沒印度板塊,低速且強非均向性的羌塘地塊則反應高溫且強烈變形的歐亞大陸板塊,兩板塊應在班公怒江縫合帶附近分界。
台灣的中央山脈除以陣列方式分析徑向非均向性外,並分析不同路徑雷力波相速度的方位非均向性,配合兩者非均向性特徵及剪力波分離觀測結果,全面性討論其來源及中央山脈地下構造在造山運動下的應力情形。由長短週期雷力波方位非均向性的差異可知中央山脈非均向性應分成兩層,淺層為東-西向快軸,而深層為東北-西南快軸方向。配合徑向非均向性模型的分布深度分布範圍介於中部地殼與深度150公里之間,推測淺層非均向性來源為地殼中液體充填的裂隙,而深部地層為碰撞應力作用下橄欖石長軸垂直最大應力方向排列。淺層的水平裂隙顯示中央山脈深部地殼目前仍有垂直伸張的應力,也就是說中央山脈仍處於抬昇的狀態從地殼裂隙的排列至深部橄欖石皆受東-西向菲律賓海板塊擠壓的應力作用,且延伸至至150公里的橄欖石非均向性分布,則說明在碰撞過程中中央山脈的地層整體垂直變形包含岩石圈及部分上部軟流圈。
摘要(英) In this study, we attempt to understand the seismic anisotropy beneath the orogeny from the observations of fundamental surface waves. The array analyses were adopted for average phase velocities of Rayleigh and Love waves, respectively. For the observations in the Tibet plateau, the inverted shear-wave structures show the noticeable contrasts between the Lhasa and Qiangtang terranes. The crustal-velocity decreases about 0.3 km/s from south to north with a significant change of Poisson’s ratio from normal value in the south to relative high value in the north. Besides, the mantle is cold and high-velocity of Lhasa but is hot with unusual low velocity of Qiangtang. In north Tibet, the model also shows no obvious lid which indicates the thinning or melting lithospheric mantle. On the whole, the opposite geophysical properties indicate the mantle lithosphere is not identical from south to north of the Tibet plateau. The Love-Rayleigh discrepancies reveal the radial anisotropies varying with depth to infer the feasible origin of anisotropy. The radial anisotropy is derived within the mid-to-lower crust beneath southern Tibet and is related the fluid-filled cracks or the horizontal partial-melting layer. The anisotropy is inferred within the upper mantle beneath northern Tibet and is coincident with the shear-wave splitting, which is considered as the results of alignments of olivine.
For the phase velocities revealed by the modified two-station method, the azimuthal anisotropy parameters of the Central Range show significant variations with period. The upper layer is displayed by the anisotropic terms of short -period signals, characterized with fast polarization in east-west direction, and is related to the crustal cracks. In contrast, the lower layer is retrieved by the extensive long-period signals and is characterized with fast polarization in approximately northeast direction. The mantle anisotropy is commonly regarded as the olivine alignments accommodated to the compression or transcurrent motion during plate collision. The mantle anisotropy extending to 150 km deep demonstrates the anisotropic properties beneath the Central Range and corresponds with the fast direction and large time-delay revealed from the shear-wave splitting.
關鍵字(中) ★ 方位非均向性
★ 徑向非均向性
★ 表面波
關鍵字(英) ★ azimuthal anisotropy
★ radial anisotropy
★ surface-wave
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 序論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-2-1 非均向性的研究發展 2
1-2-2非均向性來源 5
1-2-3 造山帶的非均向性特徵 7
1-3 論文研究區域 8
1-4 本研究內容簡述 8
第二章 資料分析方法 18
2-1 資料選取 18
2-1-1 地震目錄與篩選標準 18
2-1-2 資料分析範圍選取 18
2-2 表面波分析方法 19
2-2-1 多重濾波方法 (Multiple filter technique, MFT) 19
2-2-2 相位匹配濾波 (Phase-matched filter, PMF) 21
2-2-3 單站相速計算 22
2-2-4 交對比方法 (Cross-correlation method) 24
2-3 本研究應用方法 24
2-3-1 陣列分析 25
2-3-2 雙站分析法 26
2-4 剪力波速度逆推 30
第三章 西藏造山帶地區 : 徑向非均向性 45
3-1 西藏地區地體構造 45
3-2 資料處理與分析 46
3-2-1資料選取 46
3-2-2 陣列分析相速度 47
3-3 相速頻散曲線 48
3-4 剪力波速度構造 48
3-5 剪力波速度的徑向非均向性 50
3-5-1 羌塘地塊 51
3-5-2 拉薩地塊 53
3-5-3 討論 53
3-6 結論 54
第四章 台灣造山帶地區(一) : 方位非均向性 72
4-1 台灣地體構造 72
4-2 資料收集與處理 73
4-2 資料分析 74
4-3 非均向性參數 75
4-3-1分析方法 75
4-3-1 平均相速 76
4-3-2 快軸方向 77
4-3-3 非均向性強度 77
4-3-4 殘差分布 78
4-3-5 誤差計算 79
4-4 討論 79
4-4-1 非均向性來源 79
4-4-2 與其他相關研究比較 81
4-4-3 多層非均向性觀測 82
4-5 結論 83
第五章 台灣造山帶地區(二) : 徑向非均向性 102
5-1 概述 102
5-2 資料處理與分析 102
5-3 相速頻散曲線 103
5-4 剪力波速度模型 103
5-5 徑向非均向性 104
5-5-1 分布情形 104
5-5-2來源討論 105
5-5-3與剪力波分離研究比較 108
5-6 討論與結論 108
第六章 結論 115
附錄 拔靴法 118
參考文獻 120
參考文獻 Aki, K., and P. G. Richards, Qiantitative Seismology, University Science Books, Sausalito, 700 pp., 1980.
Aki, K., and K. Kaminuma, Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian Shock of March 1957, Bull. Earthq. Res. Inst., 41, 243-259, 1963.
Allégre, C., and D. L. Turcotte, Implications of a two-component marble-cake mantle, Nature, 323, 123-127, 1986.
Anderson, D. L., Elastic wave propagation in layered anisotropic media, J. Geophys. Res., 66, 2953-2963, 1961.
Anderson, D. L., and A. M. Dziewonski, Upper mantle anisotropy: evidence from free oscillation, Geophys. J. R. Astron. Soc., 69, 383-404, 1982.
Ando, M., ScS polarization anisotropy around the Pacific Ocean, Jour. Physics Earth, 32, 179-196, 1984.
Babuška, V., and M. Cara, Seismic anisotropy in the earth, Kluwer Acad., Norwell, Mass, 217 pp., 1991.
Backus, G. E., Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67, 4427-4440, 1962.
BenIsmail, W. and D. Mainprice, An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy, Tectonophysics, 296, 145-157, 1998.
Brace, W. F., B. W. Paulding, and C. Scholz, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71, 3939-3953, 1966.
Brandon, G. B., and B. A. Romanowicz, A “no-lid” zone in the central Chan-Thang platform of Tibet: Evidence from pure path phase velocity of long period Rayleigh waves, J. Geophys. Res., 91, 6547-6564, 1986.
Brune, N., J. E. Naff, and J. E. Oliver, A simplified method for the analysis and synthesis of dispersed wave trains, J. Geophys. Res., 65, 287-303, 1960.
Cassidy, J. F., and M. G. Bostock, Shear-wave splitting above the subducting Juan de Fuca plate, Geophys. Res. Lett., 23, 941-944, 1996.
Chai, B. H. T., Structure and tectonic evolution of Taiwan, Am. J. Sci., 272, 389-422, 1972.
Chen, C. H., Y. H. Chen, H.Y. Yen, and G. K. Yu, Lateral variations of Pn velocity and anisotropy in Taiwan from travel-time tomography, Earth Planets Space, 55, 223-230, 2003.
Chen, C. H., Analysis of topographic effects on spreading thermal water in the Central Range of Taiwan. Proc. Natl. Sci. Council, 6, 241-249, 1982.
Chen, W. P., and S. Özalaybey, Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures, Geophys. J. Int., 135, 93-101, 1998.
Chen, W. P., and T. L. Tseng, Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere, J. Geophys. Res., 112, 27, B05309, doi:10.1029/2006JB004607, 2007.
Christensen, N. I., The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analysis of ultramafic tectonites, Geophys. J. R. Astron. Soc., 76, 89-111, 1984.
Christensen, N. I., and S. Lundquist, Pyroxene orientation within the upper mantle, Bull. Geo. Soc. Am., 93, 279-288, 1982.
Cotte, N., H. A. Pedersen, M. Campillo, V. Farra, and Y. Cansi, Off-great circle propagation of intermediate period surface waves observed on a dense array in the French Alps, Geophys., J. Int., 142, 825-840, 2000.
Cotte, N., H. A. Pedersen, and TOR Working Group, Sharp contrast in lithospheric structure across the Sorgenfrei-Tornquist Zone as inferred by Rayleigh wave analysis of TOR1 project data, Tectonophysics, 360, 75-88, 2002.
Crampin, S., An introduction to wave propagation in anisotropic media, Geophys. J. R. Astron. Soc., 76, 17-28, 1984.
Crampin, S., Geological and industrial implications of extensive-dilatancy anisotropy, Nature, 328, 491-496, 1987.
Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428-438, 1994.
Crampin, S., and D. C. Booth, Shear-wave polarizations near the North Anatolian Fault, Ⅱ, Interpretation in terms of crack-induced anisotropy, Geophys. J. R. Astron. Soc., 83, 75-92, 1985.
Crampin, S., and J. H. Lovell (1991), A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? and what should we do next? Geophys. J. Int., 107, 387-407, 1991.
Davis, P., P. England, and G. Houseman, Comparison of shear wave splitting and finite strain from the India-Asia collision zone, J. Geophys. Res., 102, 27,511-27,522, 1996.
Dean, E. A., and G. R. Keller, Interactive processing to obtain interstation surface-wave dispersion, Bull. Seism. Soc. Am., 81, 931-947, 1991.
Debayle, E., B. Kennett, and K. Priestley, Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia, Nature, 433, 509-512, 2005.
Deschamps, F., S. Lebedev, T. Meier, and J. Trampert, Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States, Geophys. J. Int., 173, 827-843, 2008.
Dewey, J. F., S. Cande, and W. C. Pitman, Tectonic evolution of the India-Eurasia collision zone, Ecol. Geol. Helv., 82, 717-734, 1989.
Ding, G., W. Gai, P. Yu, and G. L. Xie, Lithospheric dynamics of China: Explanatory notes for the atlas of lithospheric dynamics of China, Seismol. Press, Beijing, 1991.
Durham, W., and C. Goetz, Plastic flow of oriented single crystals of olivine, 1, Mechanical data, J. Geophys. Res., 82, 5737-5753, 1977.
Dziewonski, A. M., and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356, 1981.
Dziewonski, A., S. Bloch, and M. Landisman, A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59, 427-444, 1969.
Efron, B., and R. J. Tibshirani, An introduction to the Bootsrrap, Chapman & Hall, NY, 436 pp., 1993.
Enderle, U., J. Mechie, S. Sobolev, and K. Fuchs, Seismic anisotropy with in the uppermost mantle of southern Germany, Geophys. J. Int., 125, 746-767, 1996.
England, P., and G. Houseman, Finite strain calculations of continental deformation, 2, Comparison with India-Asia colliaion zone, J. Geophys. Res., 91, 3664-3676, 1986.
Forsyth, D. W., The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astron. Soc., 43, 103-162, 1975.
Fouch, M., and S. Rondenay, Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 158, 292-320, 2006.
Gaherty, J. B., A surface wave analysis of seismic anisotropy beneath eastern North America, Geophys. J. Int., 158, 1053-1066, 2004.
Haines, S. S., S. L. Klemperer, L. Brown, G. Jingru, J. Mechie, R. Meissner, A. Ross, and Z. Wenjin, INDEPTH Ⅲ seismic data: From surface observations to deep crustal process in Tibet, Tectonics, 22, 1001, doi:10.1029/2001TC001305, 2003.
Hearn, T. M., Anisotropic Pn tomography in the western United States, J. Geophys. Res., 101, 8403-8414, 1996.
Herrmann, R. B., Computer programs in Seismology, vol. Ⅳ, Surface Wave Inversion, Dep. of Earth and Atmos. Sci. Saint Louis Univ., Saint Louis, Mo., 1991.
Herrin, E. and T. Goforth, Phase-matched filters: application to the study of Rayleigh waves, Bull. Seism. Soc. Am., 67, 1259-1275, 1977.
Hess, H., Seismic anisotropy of the uppermost mantle under the oceans, Nature, 203, 629-631, 1964.
Hirn, A., M. Jiang, M. Sapin, J. Diaz, A. Nercessian, Q. T. Lu, J. C. Lépine, D. N. Shi, M. Sachpazi, M. R. Pandey, K. Ma, and J. Gallart, Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet, Nature, 375, 571-574, 1995.
Houseman, G.., and P. England, Finite strain calculations of continental deformation 1. Method and general results for convergent zones, J. Geophys. Res., 91, 3651-3663, 1986.
Huang, B. S., W. G. Huang, W. T. Liang, R. J. Rau and N. Hirata, Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations, Geophys. Res. Lett., 33, L24302, doi:10.1029/2006GL027844, 2006.
Huang, W., J. F. Ni, F. Tilmann, D. Nelson, J. Guo, W. Ahao, J. Mechiw, R. Kind, J. Saul, R. Rapin, and T. M. Hearn, Seismic polarization anisotropy beneath the central Tibetan Plateau, J. Geophys. Res., 105, 27,979-27,989, 2000.
Huang, Z., Y. Peng, Y. Luo, Y. Zheng, and W, Su, Azimuthal anisotropy of Rayleigh waves in East Asia, Geophys. Res. Lett., 31, L15617, doi:10.1029/2004GL020399, 2004.
Hwang, H. J., and B. J. Mitchell, Interstation surface wave analysis by frequency-domain wiener deconvolution and model isolation, Bull. Seism. Soc. Am., 76, 847-864, 1986.
Hwang, R.-D., and G. -K. Yu, Shear-wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves, Geophys. Res. Lett., 32, L07310, doi:10.1029/2004GL021868, 2005.
Jiménez-Munt, I., M. Fernàndez, J. Vergés, and J. P. Platt, Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies, Earth Planet. Sci. Lett., 267, 276-289, 2008.
Kaneshima, S., Origin of crustal anisotropy: shear wave splitting studies in Japan, J. Geophys. Res., 95, 11,121-11,133, 1990.
Kao, H., P. R. Jian, K. F. Ma, B. S. Huang, and C. C. Liu, Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619-3622, 1998.
Kapp, P., A. Yin, C. E. Manning, M. Harrison, M. H. Taylor, L. Ding, Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet, Tectonics, 22, 2043, doi:10.1029/2002TC001383, 2003.
Kapp, P., A. Yin, C. E. Manning, M. Murphy, T. M. Harrison, M. Spurlin, L. Ding, X. G. Deng, and C. M. Wu, Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet, Geology, 28, 19-22, 2000.
Kendall, J. M., Teleseismic arrivals at a mid-ocean ridge: effects of mantle and anisotropy, Geophys. Res. Lett., 21, 301-304, 1994.
Kim, K. H. et al., Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204-220, 2005.
Kern, H., Laboratory seismic measurement: An aid in the interpretation of seismic field data, Terra Nova, 2, 617-628, 1990.
Landisman, M., A. Dziewonski, and Y. Sato, Recent improvements in the analysis of surface waves observations, Geophys J. 17, 369-403, 1969.
Lee, C.R. and W. T. Cheng, Preliminary heat flow measurements in Taiwan: presented at the Forth Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986.
Lee, T. Q., C. Kissel, E. Barrier, C. Laj, and W. R. Chi, Paleomagnetic evidence for a dischronous clockwise rotation of the Coastal Range, Eastern Taiwan, Earth Planet. Sci. Lett., 104, 245-257, 1991.
Lees, J. M., J. VanDecar, E. Gordeev, A. Ozerov, M. Brandon, J. Park, and V. Levin, Three Dimensional Images of the Kamchatka-Pacific Plate Cusp, in Volcanism and Subduction: The Kamchatka Region, Eichelberger, J. et al. (Eds.), AGU, Washington, DC, pp. 65-75, 2007.
Levin, V., W. Menke, and J. Park, Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy, J. Geophys. Res., 104, 17975-17993, 1999.
Li, C., C. Liren, H. Ke, Y. Zengrong, and H. Yurong, Study on the paleo-Tethys suture zone of Lungmu Co-Shuanghu, Tibet, Geol. Publ. House, Beijing, 131 pp., 1995.
Lin, C. H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189-201, 2000.
Liu, C.C., Geodetic monitoring of mountain building in Taiwan. EOS Trans. AGU 76 (46), 636, 1995.
Liu, Y., T. L. Teng, and Y. Ben-Zion, Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, Earthquake: shallow crustal anisotropy and lack of precursory variations, Bull. Seism. Soc. Am, 94, 2330-2347, 2004.
Love, A. E. H., A treatise on the mathematical theory of elasticity, Dover publ., New York, 643 pp., 1927.
Ma, K. F., and D. R. Song (1997), Pn velocity and Moho depth in Taiwan, J. Geol. Soc. China, 40, 167-184, 1997.
Mainprice, D. and P. G. Silver, Interpretation of SKS-waves using samples from the subcontinental lithosphere, Phys. Earth Planet. Int., 78, 257-280, 1993.
McNamara, D. E., and T. J. Owens, Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases, J. Geophys. Res., 98, 12,003-12,017, 1993.
McNamara, D., T. Owens, and W. Walter, Observations of regional phase propagation across the Tibetan Plateau, J. Geophys. Res., 100, 22,215-22,229, 1995.
McNamara, D., T. Owens, P. Silver, and F. Wu, Shear wave anisotropy beneath the Tibetan Plateau, J. Geophys. Res., 99, 13655-13665, 1994.
McNamara, D., W. Walter, T. Owens, and C. Ammon, Upper mantle structure beneath
the Tibetan Plateau from Pn travel time tomography, J. Geophys. Res., 102, 493-505, 1997.
Meade, C., P. G. Sliver, and S. Kaneshima, Laboratory and seismological observations
of lower mantle isotropy, Geophys. Res. Lett., 22, 1293-1296, 1995.
Mitchell, B. J., and G. K. Yu, Surface wave dispersion, regionalized velocity models, and anisotropy of the Pacific crust and upper mantle, Royal Astron. Soc.Geophys. Jour., 63, 497-514, 1980.
Montagner, J. P., Where can seismic anisotropy be detected in the earth’s mantle? In boundary layers …, Pure appl. Geophys., 151, 223-256, 1998.
Montagner, J.-P., D.-A. Griot-Pommera, and J. Lavé, How to relate body wave and surface wave anisotropy?, J. Geophys. Res., 105, 19015–19027, 2000.
Montagner, J. P., and H. C. Nataf, On the inversion of the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511-520, 1986.
Montagner, P. J., and T. Tanimoto, Global anisotropy in the upper mantle inferred from the regionalization of phase velocity, J. Geophys, Res. 95, 4797-4819,1990.
Montagner, P. J., and T. Tanimoto, Global upper mantle tomography of seismic velocities and anisotropies, J. Geophys, Res. 96, 20,337-20,351, 1991.
Nakajima. J., T. Matsuzawa, and A. Hasegawa, Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, J. Geophys. Res., 106, 21,843-21,857, 2001.
Nataf, H. C., I. Nakanishi, and D. L. Anderson, Anisotropy and shear velocity heterogeneities in the upper mantle, Geophys. Res. Lett., 11, 109-112, 1984.
Nelson, K. D. et al., Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results, Science, 274, 1684-1688, 1996.
Ni, J., and M. Barazangi, High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet, Geophys, J. R. Astron. Soc., 72, 665-689, 1983.
Nicolas, A., Why fast polarizations of directions of SKS seismic waves are parallel to mountain belts? Phys. Earth Planet. Inter., 78, 337-342, 1993.
Nicolas, A., and N. I. Christensen, Formation of anisotropy in upper mantle peridotites: a review. In: Fuchs, K., Froide-vaux, C. (Eds.), Composition, Structure, and dynamics of Lithosphere-asthenosphere System. Geodyn. Ser. AGU. Washington, DC, pp. 111-123, 1987.
Nishimura, C. E., and D. W. Forsyth, Anomalous Love-wave phase velocities in the Pacific: sequential pure-path and spherical harmonic inversion, Royal Astron. Soc. Geophys. Jour., 81, 389-408, 1985.
Nishimura, C. E. and D.W. Forsyth, Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneity, Royal Astron. Soc. Geopgys. Jour., 94, 479-501, 1988.
Nishimura, C. E. and D.W. Forsyth, The anisotropic structure of the upper mantle in the Pacific, Geophys. J., 96, 203-229, 1989.
Nur, A., Effects of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res.,76, 2022-2034, 1971.
Owens, T. J., and G. Zandt, Implications of crustal property variations for models of Tibetan Plateau evolution, Nature, 387, 37-43, 1997.
Özalaybey, S. and M. K. Savage, Double-layer anisotropy resolved from S phases, Geophys. J. Int., 117, 653-664, 1994.
Özalaybey, S., and M. K. Savage, Shear-wave splitting beneath western United State in relation to plate tectonics, J. Geophys. Res., 100, 18,135-18,149, 1995.
Papoulis, A., The Fourier integral and its applications, McGraw-Hill, New York, 318 pp., 1962.
Park, J., and Y. Yu, Seismic determination of elastic anisotropy and mantle flow, Science, 261, 1159-1162, 1993.
Pedersen, H. A. et al., Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis, Earth Planet. Sci. Lett., 244, 590-605, 2006.
Pedersen, H. A., O. Coutant, A. Deschamps, M. Soulage, ans N. Cotte, Measuring surface wave phase velocities beneath small broad-band arrays: tests of an improved algorithm and application to the French Alps, Geophys., J. Int., 154, 903-912, 2003.
Polet, J., and H. Kanamori, Upper-mantle shear velocities beneath southern California determined from long-period surface waves, Bull. Seism. Soc. Am., 87, 200-209, 1997.
Postma, G. W., Wave propagation in a stratified medium, Geophysics, 20, 780-806., 1955.
Prindle, K., and T. Tanimoto, Teleseismic surface wave study for S-wave velocity structure under an array: Southern California, Geophys. J. Int., 166, 601-621, 2006.
Rapine, R., F. Tilmann, M. West, J. Ni, and A, Rodgers, Crustal structure of northern and southern Tibet from surface wave dispersion analysis, J. Geophys. Res., 108, 2020, doi:10.1029/2001JB000445, 2003.
Rau, R. J., and F. T. Wu, Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532, 1995.
Rau, R. J., W. T. Liang, H. Kao, and B. S. Huang, Shear wave anisotropy beneath the Taiwan orogen, Earth Planet. Sci. Lett., 177, 177-192, 2000.
Rodgers, A. J., and S. Schwartz (1997), Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms, Geophys. Res. Lett., 24, 9-12, 1997.
Sandvol, E., J. Ni, R. Kind, and W. Zhao, Seismic anisotropy beneath the southern Himalaya-Tibet collision zone, J. Geophys. Res., 102, 17,813-17,823, 1997.
Satô, Y., Analysis of dispersed surface wave, I. Bull. Earthq. Res. Inst. Tokyo Univ., 33, 33-47, 1955.
Satô, Y., Analysis of dispersed surface wave, Ⅱ. Bull. Earthq. Res. Inst. Tokyo Univ., 34, 9-18, 1956.
Satô, Y., Analysis of dispersed surface wave, Ⅲ. Bull. Earthq. Res. Inst. Tokyo Univ., 34, 131-138, 1956.
Savage, M. K., Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37, 65-106, 1999.
Schlue, J. W. and L. Knopoff, Shear-wave polarization anisotropy in the Pacific Basin, Geophys. J. R. Astr. Soc., 49, 145-165, 1977.
Seno, T., The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42, 209-226, 1977.
Sherrington, H. F., G. Zandt., and A. Frederiksen, Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters, J. Geophys. Res., 109, B02312, doi:10.1029/2002JB002345, 2004.
Shyu, J. B. H., K. Sieh, and Y. G. Chen, Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements, Earth Planet. Sci. Lett., 233, 167-177, 2005.
Silver, P. G., and W. W. Chan (1991), Shear-wave splitting and subcontinental mantle deformation, J. Geophys. Res. 96, 16,429-16,454, 1991.
Silver, P. G., and M. K. Savage, The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int., 119, 949-963, 1994.
Silver, P. G., Seismic anisotropy beneath the continents: Probing the depths of geology, Annu, Rev. Earth Planet. Sci., 24, 385-432, 1996.
Smith, M. L. and F. A. Dahlen, The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res., 78, 3321-3333, 1973.
Stein, S. and M. Wysession, An Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Oxford, 498 pp., 2003.
Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Geological Society of China, 4, 67-89, 1981.
Suppe, J., Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. China, 6, 21-33, 1984.
Tanimoto, T., and D. L. Anderson, Lateral heterogeneity and azimuthal anisotropy of the upper mantel: Love and Rayleigh waves 100-250 s, J. Geophys. Res., 90, 1842-1858, 1985.
Taylor, S. R., and M. A. Toksoz, Measurement of interstation phase and group velocities and Q using wiener filtering, Bull. Seism. Soc. Am., 72, 73-91, 1982.
Teng, L. S., Geotectonic evolution of late Cenozoic arc-collision in Taiwan, Tectonophysics, 183, 57-76, 1990.
Thomsen, L., Weak elastic anisotropy, Geophysics, 51, 1954-1966, 1986.
Tsai, Y. B., Seismotectonics of Taiwan, Tectonophysics, 125, 17-37, 1986.
Turner, S., N. Arnaud, J. Liu, N. Rogers, C. Hawkesworth, N. Harris, S. Kelley, P. van Calsteren, and W. Deng, Post-collision, shoeschonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of oceanic basalts, J. Petrol., 37, 45-71, 1996.
Turner, S., C. Hawkesworth, J. Liu, N. Rogers, S. Kelley, and P. van Clasteren, Timing of the Tibetan uplift constrained by analysis of volcanic rocks, Nature, 364, 50-54, 1993.
Unsworth, M., W. Wei, A. G. Jones, S. Li, P. Bedrosian, J. Booker, S. Jin, M. Deng, and H. Tan, Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data, J. Geophys. Res., 109, B02403, doi:10.1029/2002JB002305, 2004.
Vauchez, A., and A. Nicolas, Mountain building: strike-parallel motion and mantle anisotropy, Tectonophysics, 185, 183-201, 1991.
Vergne, J., G. Wittlinger, V. Farra, and H. Su, Evidence for upper crustal anisotropy in the Songpan-Ganze (northeastern Tibet) terrene, Geophys. Res. Lett., 30, 1552, doi:10.1029/2003GL016847, 2003.
Vinnik, L. P., R. Kind, G. L. Kosarev, and L. I. Makeyeva, Azimuthal anisotropy in the lithosphere from observations of long-period S-wave, Geophys. J. Int., 99, 549-559, 1989.
Wang, J. H., and B. H. Chin, Note on Poisson ratios of subsurface in the middle part of the Taitung Longitudinal Valley, Taiwan, Petrol. Geol. Taiwan, 20, 173-179, 1984.
Wang, Y., Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation, Phys. Earth Planet. Inter., 126, 121-146, 2001.
Wei, W., et al., Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, Science, 292, 716-718, 2001.
Weiss, T., S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl, Seismic velocities and anisotropy of the lower continental crust: A review, Pure Appl. Geophys., 156, 97-122, 1999.
Woods, M. T., J. J. Lévêque, E. A. Okal, and M. Cara, Two-station measurements of Rayleigh wave group velocity along the Hawai’ian Swell, Geophys. Res. Lett., 18, 105-108, 1991.
Wu, F. T., R. -J. Rau, and D. Salzberg, Taiwan orogeny: thin-skinned or lithospheric collision?, Tectonophysics, 274, 191-220, 1997.
Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac, Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312,doi:10.1029/2007JB004983, 2007.
Yang, Y., and D. W. Forsyth, Rayleigh wave phase velocities, small-scale convection, and azimuthal anisotropy beneath southern California, J. Geophys. Res., 111, B07306, doi:10.1029/2005JB004180, 2006.
Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280, 1991.
Yin, A., and T. Harrison, Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211-280, 2000.
Yu, G. K., and B. J. Mitchell, Regionalized shear velocity models of the Pacific upper mantle rom observed Love and Rayleigh wave dispersion. Geophys. J. R. astr. Soc., 57, 311 -341, 1979.
Yu, Y., J. Park, and F. Wu, Mantle anisotropy beneath the Tibetan Plateau: evidence from long-period surface waves, Phys. Earth Planet. Inter., 87, 231-246, 1995.
Yu, S. B., H. Y. Chen., and L. C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.
Zhang, S. and S. Karato, Lattice preferred orientation of olivine aggregates deformed in sample shear, Nature, 375, 774-777, 1995.
Zhao, W., J. Mechie, L. D. Brown, J. Guo, S. Haines, T. Hearn, S. L. Klemperer, Y. S. Ma, R. Meissner, K. D. Nelson, J. F. Ni, P. Pananont, R. Rapine, A. Ross, and J. Saul, Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data, Geophys. J. Int., 145, 486-498, 2001.
陳燕玲,台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文, 1995.
黃瑞德,由表面波頻散推研中國大陸之上部地函構造,國立中央大學地球物理研究所博士論文, 1999.
指導教授 黃柏壽、顏宏元
(Bor-shouh Huang、Hong-yuan Yen)
審核日期 2009-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明