博碩士論文 89623009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:34.237.52.11
姓名 蔡宗哲(Tsung-Che Tsai)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 非週期不均勻電漿系統中靜電電漿動力數值模擬碼之設計與應用
(Development and Application of an Electrostatic Numerical Simulation Code for Studying Plasma Kinetic Process in Non-periodic and Non-uniform Plasmas)
相關論文
★ 第23太陽週期之前半期大尺度日珥暗紋之研究★ 利用台灣日震觀測網的太陽影像資料研究 太陽差動自轉的變化情形
★ Simulation and Theoretical Study of the Kelvin-Helmholtz Instabilityin the MHD Plasmas★ 太陽風中旋轉不連續面及非線性艾爾文波之數值模擬研究
★ 無碰撞電漿中靜電雙流不穩定之數值模擬研究★ 靜電激震波之電漿動力數值模擬與理論研究
★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究★ 磁流體力學中電漿團加速與磁場重聯率變化成因之數值模擬研究
★ 利用強場電磁波產生高能質子束的數值模擬研究★ 太空電漿中跨尺度快波中速波與慢波的頻散關係之研究
★ 極端AU指數事件之研究★ 擾動層厚度對 Kelvin-Helmholtz 不穩定之成長率隨波長分佈的影響
★ 磁層與電離層耦合模式中磁層與電離層邊界條件對磁副暴發生時夜側極光弧分布之影響★ 太空電漿中之中低頻波的研究
★ 理論與數值模擬研究次磁音速的寬頻Kelvin-Helmholtz不穩定波動成長率與非線性發展過程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此模擬碼之基本架構是從Lyu et al.(2001)之跨尺度電漿模擬中簡化而來的,其目的是測試此跨尺度電漿模擬碼基本架構之可行性。我們先從最基本的也是最簡單的一維靜電電漿物理現象著手,以減低模擬碼之複雜度。此模擬碼所相對應之尺度為電子的時空尺度,其尺度與全粒子碼(full particle code)相同。在本論文中,將以此模擬碼來模擬傳統全粒子碼最棘手的問題之一:非週期性邊界之物理現象,靜電激震波(electrostatic shock)。本模擬碼所解之基本方程式為電子與離子之Vlasov equation以及有位移電流、無磁場的安培定律(Ampère’s law)三個方程式,並且在電子的Vlasov equation中,加入了相對論的效應,以防止電子之速度超過光速。在模擬碼中,我們使用cubic spline來計算相空間中的微分與積分,時間積分則是採用predictor-corrector method來處理。
由模擬的結果中顯示,電子穿過靜電激震波後,會先加速,形成一個低溫的電子束。此電子束會與下游電漿發生two-stream instability,產生非線性大振幅的靜電波,進而造成波與粒子的交互作用,在下游產生phase mixing的現象,同時出現一個類似electron plasma solitary wave(或稱Langmuir solitary wave)往下游傳播。由我們的結果中顯示,在非碰撞之靜電激震波中,電子主要是藉由phase mixing來增加其溫度與亂度。
摘要(英) The purpose of this thesis work is to develop a new type of one-dimensional electrostatic plasma simulation code. This simulation code is designed based on a general concept of numerical scheme proposed by Lyu et al. (2001) in their cross-scale simulation model. One of the objectives of this study is to perform a feasibility study of this proposed numerical scheme. For simplicity, we choose one-dimensional electrostatic simulation as a starting point. This simulation code is designed to study electron-scale plasma phenomena. Electron-scale plasma phenomena are used to be studied by means of full-particle code simulation. The new simulation code is carried out to study electrostatic shocks, which is characterized by non-periodic boundary conditions and was a very difficult subject to be studied by previous full-particle code simulation. Basic equations of this simulation code include Vlasov equation for relativistic electrons, Vlasov equation for non-relativistic ions, and Ampere’’s law with displacement current but without magnetic field. In this simulation code, we use cubic-spline method to evaluate differentiation and integration in phase space and use predictor-corrector method to advance simulation in time.
Based on our simulation results, an electrostatic shock can be characterized by a negative electric field (directed to the upstream) at shock ramp, which can decelerate upstream ions and accelerate upstream electrons. The magnitude of this negative ramp electric field depends on electrons’’ thermal pressure gradient at the shock ramp. Terminal speed of accelerated electrons depends on the magnitude of this ramp electric field. The accelerated beam electrons can result in ion-electron and electron-electron two-stream instabilities in the shock transition region downstream from the shock ramp. Nonlinear electrostatic waves result from these two-stream instabilities can lead to wave-particle interactions and result in phase mixing of electrons in the downstream shock transition region. An electron plasma solitary wave (or Langmuir solitary wave) can be formed in this phase-mixing region and propagates toward downstream. Our results indicate that thermalization and increasing of entropy in the collisionless electrostatic shock are mainly achieved by phase-mixing process in the shock transition region.
關鍵字(中) ★ 電子靜電固形波
★ 靜電激震波
★ 數值模擬
關鍵字(英) ★ electron plasma solitary wave
★ electrostatic shock
★ numerical simulation
論文目次 致謝 i
中文摘要 ii
英文摘要 iii
本文目錄 iv
圖目錄 vi
表目錄 viii
第一章 導論 1
第二章 數值模擬之基本架構 3
2.1 模擬碼之基本方程式 3
2.2 歸一化 5
2.3 數值方法 6
2.3.1 Predictor-Corrector Method 6
2.3.2 Cubic Spline Method 11
2.4 邊界條件 14
2.5 模擬碼運作流程 15
第三章 靜電激震波之研究 19
3.1 初始條件 19
3.1.1 Jump Conditions 19
3.1.2 初始速度分布函數的設定 22
3.2 模擬之結果 26
3.2.1 Case 1 26
3.2.2 Case 2 34
3.2.2 Case 3 39
3.2.2 Case 4 43
第四章 總結 49
4.1 模擬之結果 49
4.2 未來之展望 51
參考文獻 52
附錄一 Fortran Programs 54
ES_comm.f 55
ES_comm1.f 56
ESvlasov.f 57
FCS_PCS_YP.f 73
TRID_TRIX.f 77
參考文獻 Birdsall, C. K., A. B. Langdon, and H. Okuda, Finite-size particle physics applied to plasma simulation, in Methods in Computational Physics, Vol. 9, edited by B. Alder, S. Fernbach, and M. Rotenberg. P.241, Academic Press, New York, 1970.
Cheng, C. Z., and Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330-351, 1976.
Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley Pub. Co., New York, 1980.
Han, J. R., and L. H. Lyu, Simulation study of field-aligned potential drop in discrete aurora, Proceedings of the Fifth (1996) Atmospheric Science Symposium, June 26-29, 1996, Tao-Yuan, Taiwan, R. O. C., pp. 166-121, 1996.
Hildebrand, F. B., Advanced Calculus for Applications, 2nd ed., Prentice- Hall Inc., New Jersey, 1976.
Hornbeck, R. W., Numerical Methods, 2nd ed., Quantum Publishers Inc., New York, 1977.
Lyu, L. H., MHD simulation studies of 2-D and 3-D magnetic reconnections, Proceedings of the Fifth (1996) Atmospheric Science Symposium, June 26-29, 1996, Tao-Yuan, Taiwan, R. O. C., pp. 472- 477, 1996.
Lyu, L. H., M. Q. Chen, and W. H. Tsai, A theoretical model for cross-scale simulation of collisionless plasmas in space, Proceedings of the Sixth (2001) Atmospheric Science Symposium, September 25-27, 2001, Taipei, Taiwan, R.O.C., pp. 125-130, 2001.
Richtmyer, R. D., and K. W. Morton, Difference Methods for Initial-Value Problems, second edition, John Wiley & Sons, New York, 1967.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Combridge University Press, New York, 1988.
Shampine L. F., and M. K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, H. H. Freeman and Company, San Francisco, 1974.
Swift, D. W., and L. C. Lee, Rotational discontinuities and the structure of the magnetopause, J. Geophys. Res., 88, 111, 1983.
Swift, D. W., Use of a hybrid code for a global-scale plasma simulation, J. Geophys. Res., 126, 109, 1996.
指導教授 呂凌霄(Ling-Hsiao Lyu) 審核日期 2002-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明