博碩士論文 89642001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.229.90
姓名 許雅儒(Ya-Ju Hsu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 集集地震之震前、同震及震後變形模式研究
(Modeling studies on interseismic, coseismic and postseismic deformations associated with the 1999 Chi-Chi, Taiwan earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 台灣地震震源尺度分析:2003年規模>6.0地震分析★ 使用震源機制逆推台灣地區應力分區狀況
★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 2003年台東成功地震之同震變形模式研究
★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性★ 中大規模地震斷層參數之同步求解
★ 集集地震同震及震後應力演化與地震活動之相關性★ 2005 年宜蘭雙主震之震源破裂滑移分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用大量GPS觀測資料進行各項研究,然而,受到大氣層水氣含量、季節變化、測站點位不穩定或其它因素影響,在GPS時間序列中通常隱含各種不同的雜訊。為了增加訊噪比,本研究利用一套系統化的分析方法處理GPS時間序列,分析結果顯示,雜訊較接近「白噪音+閃爍雜訊」的模式。我們藉由最大可能估計法估算雜訊的大小,並修正其在時間序列造成之影響,進而求得較可靠之參數及其誤差。利用修正過後之地殼運動速度場,可直接計算地殼應變率之空間變化。本人改進前人方法,由內插之速度場直接推求應變率,並考慮測站和內插點之距離、測站速度之標準偏差及測站分佈,給予不同的權重來計算合理之地殼應變率。新模式針對測站密度不同,採用不同的特性長度,確保內插點受到良好包圍,避免資訊不足強作內插。同時,為避免內插時在沒有測站的地方產生異常訊號,最後得到的速度場再根據測站密度平滑化。但若測站幾何分佈不佳,內插的過程中還是容易產生假訊號,在解釋時必需特別小心。此外,我們以二維彈性半無限空間錯位模型來了解台灣造山帶間震期之地殼變形;利用投影至板塊運動方向之速度場,推求可能的斷層幾何形貌及滑移速率。結果顯示:台灣中部至南部的地質構造可能有滑脫面的存在,約位於深度10 km處。中部和南部剖面滑脫面上的滑移速率分別為2.7 cm/yr和4 cm/yr,顯示台灣南部似乎有較大的地震潛能,未來可能錯動的斷層應該位於觸口斷層以西。而中部剖面預測的斷層破裂位置,則與車籠埔斷層大致相同,集集地震的發生更驗證了模型的推論。不過模型並沒有考慮非彈性效應,再加上無法解釋中央山脈的成因,未來仍有待更深入之研究。
為了解集集地震同震及震後斷層滑移分佈,研究中使用彈性半無限空間模型及層狀模型進行逆推。同震滑移分佈顯示斷層錯動量最大約為10 m,位於石崗、豐原一帶,即斷層向東轉折處,如此大的滑移量可沿斷層面向下延伸約10 km。分析GPS觀測值及模型預測值之擬合度顯示,下盤測站之殘差存有系統偏差,隱含車籠埔斷層兩側可能存在之側向變化,可能比地層在緃向之變化重要。分析集集地震震後GPS資料顯示,震後變形並非斷層帶孔隙液壓之變化或黏彈性鬆弛現象所造成,主要機制應為震後滑移。分別對震後三個月及十五個月之資料進行逆推,最佳斷層模型顯示,在主斷層面下方深度10 km處,可能存在一傾角近似水平之滑脫面,與震前及同震變形之研究相符。此兩個時段之最大滑移量分別為25和46 cm,皆位於集集地震之震
源附近。根據斷層錯動量分佈,同震滑移大的地方無顯著震後變形,這表示大部份的應力已被釋放。十五個月之結果顯示震後滑移已轉往較深之滑脫面,其相對於整體釋放的能量由三個月的68% 增加至十五個月的80%。由震後滑移模型和集集地震餘震所計算的力矩也有所不同,在震後三個月餘震和震後滑移模型之力矩分別為1.6 x 1019 N-m和2.1x 1019 N-m,其量值大致相當;震後十五個月則為2.0 x 1019 N-m和4.7x 1019 N-m。換言之,震後滑移所釋放之能量已遠超過餘震之效應,其中隱含大部份的能量可能藉由無震滑移釋放。相較於同震滑移模型所計算之力矩,15個月震後滑移模型約為主震之15%。若採用層狀模型,滑脫面之深度比彈性半無限空間模型深約5 km,但所得滑移量分佈及與觀測資料之擬合度並無太大不同。
我們採用延展全網逆推濾波法(ENIF)探討震後滑移隨時空之變化。此法使用卡曼濾波預測斷層系統之行為,利用新的觀測資料去修正預測值,再加上資料在空間和時間之密集取樣,可精準地預測系統之行為。分析震後十五個月資料顯示,主斷層面所累積之滑移小於其下方之滑脫面,且滑移速率由剛開始的0.45 m/yr隨時間迅速遞減,在震後200天速率已小於0.1 m/yr;而滑脫面之滑移速率由起始的0.55 m/yr大致呈線性遞減,至震後450天才轉為不顯著。整個斷層滑移歷程,滑脫面累積之滑移量約為主斷層面之1.5倍。由於滑脫面之同震滑移並不顯著,再加上間震期之研究顯示此區在震前可能一直處於無震滑移之狀態,屬於速度強化地區,受到地震造成的應力影響產生加速滑移,使其震後滑移量大於主斷層面。
為了解下部地殼及上部地函在集集地震後可能產生之黏彈性變形,我們分析震後三年的資料發現,在車籠埔斷層以東之近斷層測站,震後位移衰減的速度大於更東邊的中央山脈及台灣東部之測站,這隱含震後斷層深部滑移或黏彈性變形二種可能性。但黏彈性模型預測之地表位移和GPS觀測資料之擬合度遠不如震後滑移模型。推測震後滑移對地表變形之貢獻可能大於黏彈性變形,需要更長的時間才能觀測到訊號較微弱的黏彈性變形。因此,研究中比較震後滑移及震後滑移加黏彈性變形之綜合模型,但在一維層狀模型的假設之下,是否有加入黏彈性變形對觀測資料之擬合度並無顯著區別。兩模式之預測值皆與觀測值存有顯著差距,尤其在垂直分量之擬合度並不佳,未來仍需探究側向變化之影響。
摘要(英) Plenty of GPS data were used in our seismic deformation studies. However GPS time series exhibit not only tectonic signals but also colored noises. In order to accurately estimate model parameters and their uncertainties, noises have to be evaluated using more realistic model. Some recent studies showed that continuous GPS data are best described as a combination of white noise and flicker noise. We use a maximum likelihood method to estimate amplitudes of these noises and remove them from GPS time series. After carefully corrections, secular velocities and their uncertainties are used to estimate crustal strain rates. We use a modified version of Ward (1998) for calculating strain rates in spherical geometries. Our particular method considers three different types of weights: observational errors, distance between the observation and the location of estimation, and an additional weight to account for variable station density. We also consider spatial coverage of stations and apply a smoothing operator to avoid unreasonable velocity variations without data constrained. Our approach provides more stable and interpretable strain estimates than previous studies, especially when stations are irregularly distributed or when we use larger spatial length scale of estimation.
We use a GPS-derive surface velocity field of Taiwan for the time period between 1993 and 1999 to infer interseismic slip rates on subsurface faults. We adopt a composite elastic half-space dislocation model constrained by GPS horizontal velocities projected into the direction of plate motion (306º). The model fault geometry includes a shallowly dipping décollement, in western Taiwan, and a two-segment fault representing the Longitudinal Valley Fault (LVF) in eastern Taiwan. The décollement is composed of two fault segments, one extending west under the Central Range (CR) and one extending east of the LVF, with estimated slip rates of about 35 mm/yr and 80 mm/yr, respectively. The optimal geometry of décollement is subhorizontal (2º~11º) at a depth of 8~9 km. The inferred surface location of the western end point of dislocation in the northern profile is located 15 km east of the Chelungpu fault, while in the southern section, it is located beneath the Chukou fault. Our model successfully match the horizontal velocity field and predict the location of possible future rupture, while cannot explain the vertical data and thus fail to predict the active mountain building processes in Taiwan. This failure indicates a more complex rheological model that incorporates inelastic behavior is needed.
GPS measurements of coseismic displacements from the 1999, Chi-Chi, Taiwan earthquake are modeled using both elastic half-space and layered models. The optimal slip distribution shows maximum slip is 11 m, concentrated at the northern bend of the fault and extended about 10 km in down-dip direction from the ground surface. Both models show only one or two meters of net slip at the hypocenter. We also find the large and spatially coherent residuals, which may be attributed to elastic lateral heterogeneity, topography, as well as inelastic deformation, all of which are ignored in this simplified model. Similar strategies are adopted to estimate postseismic slip distributions and fault geometries using 3-month and 15-month GPS data after mainshock. Preliminary analyses show afterslip is the main mechanism of postseismic deformation. Assuming the shallow fault dips 24~26° E, as determined by numerous studies of the mainshock, we invert for the deeper fault structure. Our results show that the fault dip shallows with depth below the hypocenter, merging into a nearly horizontal décollement at a depth of 10 km, consistent with interseismic and coseismic modeling studies. The afterslip distributions for two time periods show maximum slips of 25 cm and 46 cm in the hypocentral region at 7-12 km, respectively. Afterslip is notably absent in the region of maximum coseismic slip, consistent with the afterslip being driven by the mainshock stress change. The afterslip on the décollement in the first 3 months and over 15 months contribute 68% and 80% of the total modeled moment release, respectively. It is worth noting that the slip on the lower décollement becomes more prominent over the longer time period. The afterslip moment inferred from the 15-month GPS observation is 4.7 x 1019 N m, 44% of which occurred in the first 3 months. In contrast, the seismic moment released by the aftershocks in the same period is approximately 2.0 x 1019 N m and 85% of that moment was released before the end of 1999. This indicates that although part of the GPS-observed moment may be due to aftershocks, there is still a large amount of postseismic deformation which is aseismic. Then we adopt a more realistic layered model to estimate slip distribution. The optimal model show the depth of lower décollement is 5 km deeper than previous one, but the slip distribution and misfit are very similar.
We employed the Extended Network Inversion Filter(ENIF)to invert for the evolution of afterslip with time and space. The modeling algorithm is based on recursive liner Kalman filtering, which is used to estimate system processes at each epoch given all past and present data and forecast future observations. The prediction and update process are iterated through the entire data set to precisely describe the system. The postseismic GPS data over 15 months is used to infer the history of afterslip, it shows shallow slip decays more rapidly on the main fault than deeper décollement. The slip rate on the main fault began about 0.45 m/yr and downed to 0.1 m/yr in 200 days, while it on the décollement started form 0.55 m/yr and took about 450 days decreasing to 0.1 m/yr. The accumulated slip on lower décollement over 15 months is 1.5 times larger than it on the main fault. The coseismic slip on the décollement is not significant, while afterslip is prominent. This is consistent with the experiment result of a velocity-strengthening fault zone rheology.
To explain the possible deformation with viscous flow in the lower crust and upper mantle, we examine postseismic GPS data over 3 years. The moving directions of stations are congruent in different time periods and the magnitudes of displacements decrease with time, the rate decrease is large near the fault but small in eastern Taiwan. This might imply either a deepening of the slip or the effect of viscous flow. We adopted a viscoelastic model with 1-D layer structure, but the model predictions are discordant with GPS observations. Misfits are similar for combination of afterslip and viscoelastic models, and afterslip model alone. In either case, the discrepancy between predictions and observations still exits, especially for vertical displacements. We conclude a more realistic 3D model, included lateral heterogeneity of viscosity is really needed in the future.
關鍵字(中) ★ 黏彈性模型
★ 延展全網逆推濾波法
★ 震後變形
★ 同震變形
★ 間震期
★ 地殼變形
關鍵字(英) ★ viscoelastic
★ extended network inversion filter
★ postseismic
★ interseismic
★ coseismic
論文目次 摘要…………………………………………………………………………………i
誌謝…………………………………………………………………………………iii
目錄…………………………………………………………………………………iv
圖目…………………………………………………………………………………vii
表目…………………………………………………………………………………ix
第一章、緒論……………………………………………………………… 1
1.1 研究動機及目的……………………………………………………………1
1.2 研究內容……………………………………………………………………2
1.2.1 GPS時間序列分析……………………………………………………… 2
1.2.2地殼應變場……………………………………………………………… 2
1.2.3間震期地殼變形模式…………………………………………………… 3
1.2.4同震變形分析…………………………………………………………… 3
1.2.5震後變形分析…………………………………………………………… 3
第二章、GPS資料處理及分析…………………………………………… 5
2.1 GPS資料之誤差來源及因應對策………………………………………… 5
2.1.1軌道誤差………………………………………………………………… 5
2.1.2衛星及接收儀時錶誤差………………………………………………… 6
2.1.3固定站座標誤差………………………………………………………… 6
2.1.4對流層延遲誤差……………………………………………………………6
2.1.5電離層延遲誤差……………………………………………………………7
2.1.6跳週之影響…………………………………………………………………7
2.1.7整數週波未定值求解誤差…………………………………………………8
2.1.8相位中心漂移………………………………………………………………8
2.1.9多路俓效應…………………………………………………………………8
2.2 GPS資料處理過程……………………………………………………………9
2.3 GPS時間序列分析………………………………………………………… 12
第三章、間震期應變累積及地殼變形模式……………………………… 20
3.1 台灣地區地體構造概述……………………………………………………20
3.2 應變分析……………………………………………………………………23
3.2.1相關前人研究…………………………………………………………… 23
3.2.2新模式…………………………………………………………………… 28
3.2.3台灣西部間震期地殼應變率…………………………………………… 32
3.3 間震期地殼變形模式之相關研究…………………………………………35
3.4 彈性半無限空間模型………………………………………………………37
3.5台灣造山帶間震期地殼變形二維錯位模式研究………………………… 40
第四章、集集地震同震變形模式……………………………………… 46
4.1 層狀模型…………………………………………………………………..46
4.1.1基本方程式……………………………………………………………… 47
4.1.2 微分方程式之一般解……………………………………………………50
4.2 集集地震同震變形之模式研究……………………………………………53
4.2.1彈性半無限空間模型…………………………………………………… 53
4.2.2 層狀模型…………………………………………………………………58
第五章、集集地震震後變形模式………………………………………… 63
5.1震後變形機制及相關研究………………………………………………… 63
5.1.1震後滑移………………………………………………………………… 63
5.1.2 黏彈性變形………………………………………………………………65
5.1.3 孔隙液壓變化造成之地表變形…………………………………………70
5.1.4 斷層面的摩擦行為………………………………………………………71
5.2震後變形之彈性錯位模式………………………………………………… 73
5.3震後變形之時空變化……………………………………………………… 89
5.3.1 研究方法及相關前人研究…………………………………………… 89
5.3.2 ENIF於集集地震之應用…………………………………………………92
5.4震後黏彈性變形…………………………………………………………… 98
第六章、討論與結論………………………………………………………... 109
6.1討論………………………………………………………………………… 109
6.2結論………………………………………………………………………… 110
參考文獻……………………………………………………………………… 114
附錄一………………………………………………………………………… 126
附錄二………………………………………………………………………… 129
英文摘要……………………………………………………………………… 131
參考文獻 參考文獻
余水倍,郭隆晨,陳宏宇,許雅儒,蘇宣翰,劉桓吉,台北盆地活動斷層及地盤下陷水準測量:八十八年下半年及八十九年度都會區地下地質與工程環境調查研究-台北都會區工程地質,中央地質調查所報告第89-11號,89頁,2000。
李鍚堤,大地應力分析與弧陸碰撞到台灣北部應力場變遷之影響。國立台灣大學地質研究所博士論文,370頁,1986。
許雅儒,由GPS觀測資料探討宜蘭平原的伸張變形,國立中央大學應用地質研究所碩士論文,108頁,1999。
郭隆晨,余水倍,宜蘭平原之伸張變形。第五屆台灣地區地球物理研討會論文集,633-641頁,1994。
郭隆晨,高精度GPS衛星測量在地殼變形觀測之研究,國立交通大學土木研究所博士論文,203頁,2000。
楊耿明,黃旭燦,吳榮章,丁信修,李長之,梅文威,徐祥宏,斷層活性觀測與地質潛勢評估:台灣陸上斷層帶地質構造質與地殼變形調查研究(4/5)-台灣中部麓山帶地區,中央地質調查所報告第92-11號,51頁,2003。
鄧屬予,台灣新生代大地構造。台灣大地構造,49-93頁,2002。
鄭世楠,台灣及其鄰近地區應力分佈的研究。國立中央大學地學科學研究所博士論文,215頁,1995。
鄭世楠,葉永田,余明同,辛在勤,台灣十大災害地震圖集,CWB-9-1999-002-9, 290 pp., 1999。
Aki, K., and P. G. Richards, Quantitative Seismology: Theory and Methods, 932 pp., W. H. Freeman, New York, 1980.
Arnadottir, T., P. Segall, and P. T. Delaney, A fault model for the 1989 Kilauea south flank earthquake form leveling and seismic data, Geophys. Res. Lett., 18, 2217-2220, 1991.
Beavan, J., and J. Hanies, Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand, J. Geophys. Res., 106, 741-770, 2001.
Bechor, N., P. Segall, Y.J. Hsu, and S.B. Yu, Time-depended inversion for post-seismic slip following the 1999 Chi-Chi Taiwan earthquake using GPS observations, EOS, Trans., AGU, Vol. 82, 47, Nov 2001.
Beutler, G., I. Bauersima, W. Gurtner, M. Rothacher, T. Schildknecht, and A. Geiger, Atmospheric refraction and other important biases in GPS carrier phase observations, in atmospheric effects on geodetic space measurements, Monograph 12, 15-43, School of Surveying, University of New South Wales, Kensington, Australia, 1988.
Bilham, R., K. Larson, J. Freymueller, and Project Idylhim members, GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 386, 61-64, 1997.
Blewitt, G., Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, J. Geophys. Res., 94, 10187-10203, 1989.
Bos, A. G., W. Spakmann, and M. C. J. Nyst, Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field, J. Geophys. Res., 108, doi:10.1029/2002JB002336, 2003.
Burgmann, R., P. Segall, M. Lisowski, and J. P. Svarc, Postseismic strain following the 1989 Loma Prieta earthquake from repeated GPS and leveling measurements, J. Geophys. Res., 102, 4933-4955, 1997.
Burgmann, R., S. Ergintav, P. Segall, L. Hearn, S. McClusky, R. Reilinger, H. Woith, and J. Zschau, Time-space variable afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am., 92, 126-137, 2002.
Carena, S., J. Suppe, and H. Kao, Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geology, 30, 935-938, 2002.
Cattin, R., P. Briole, H. Lyon-Caen, P. Bernard, and P. Pinettes, Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications. Geophys. J. Int., 137, 149-158, 1999.
Chen, C. H., T. L. Teng, and Y. C. Gung, Ten-second Love wave propagation and strong ground motions in Taiwan, J. Geophys. Res., 103, 21253-21273, 1998.
Chen, H., and R. Rau, Earthquake locations and style of faulting in an active arc-continent plate boundary: The Chihshang Fault of eastern Taiwan, Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract T61B-1277, 2002.
Chen, K. C., B. S. Huang, J. H. Wang, and H. Y. Yen, Conjugate thrust faulting associated with the 1999 Chi-Chi Taiwan, earthquake sequence, Geophys. Res. Lett., 29, doi:10.1029/2001GL014250, 2002.
Cheng, W. B., Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations, TAO, 11, 643-660, 2000.
Cohen S. C., Numerical models of crustal deformation in seismic zones, Advances in geophysics, 41, 133-231, 1999.
Deng, J., K. Hudnut, M. Gurnis, and E. Hauksson, Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake, Geophys. Res. Lett., 26, 3209-3212, 1999.
Dietrich, J. H., Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168, 1979.
Dominguez, S., J. P. Avouace, and R. Michel, Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: implications for the seismic cycle along the western foothills of Central Taiwan. J. Geophys. Res., 108, 10.1029/2001JB000951, 2003.
Dong, D., and Y. Bock, GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California, J. Geophys. Res., 94, 3949-3966, 1989.
Donnellan, A., and G. A. Lyzenga, GPS observations of fault afterslip and upper crustal deformation following the Northridge earthquake, J. Geophys. Res., 103, 21285-21297, 1998.
Douglass, J. J., and B. A. Buffett, The stress state implied by dislocation models of subduction deformation, Geophys. Res. Lett., 22, 3115-3118, 1995.
Du, Y., P. Segall, and H. Gao, Dislocations in inhomogeneous media via a moduli perturbation approach: General formulation and two-dimensional solutions, J. Geophys. Res., 99, 13767-13779, 1994.
Felzer, K. R., T. W. Becker, R. E. Abercrombie, and G. Ekstrom, Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake. J. Geophys. Res., 107, doi:10.1029/2001JB000911, 2002.
Fernandez, J., T. T. Yu, and J. B. Rundle, Horizontal viscoelastic-gravitational displacements due to rectangular dipping thrust fault in a layered earth model, J. Geophys. Res., 101, 13581-13594, 1996.
Freed, A. M., and J. Lin, Time-dependent changes in failure stress following thrust earthquakes, J. Geophys. Res., 103, 24393-24409, 1998.
Freed, A. M., and J. Lin, Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, 411, 180-183, 2001.
Gurtner, W., G. Beutler, I. Bauersima, and T. Schildtknecht, Evaluation of GPS carrier difference observation: The Bernese second generation software package. First International Symposium on Precise Positioning with the GPS, Rockville, 1985.
Haines, A. J., and W .E. Holt, A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J Geophys. Res., 98, 12057-12082, 1993.
Harris, R. A., and R. W. Simpson, The 1999 Mw 7.1 Hector Mine, California earthquake-A test of the stress shadow hypothesis? Bull. Seismol. Soc. Am. 4, 1497-1512, 1998.
Harris, R. A., and R. W. Simpson, Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure J. Geophys. Res., 103, 24439-24452, 2002
Hearn, E. H., What can GPS data tell us about the dynamics of post-seismic deformation? Geophys. J. Int., 155, 753-777, 2003.
Heki, K., S., Miyazaki, and H. Tsuji, Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598, 1997.
Heki, K., and Y. Tamura, Short term afterslip in the 1994 Sanriku-Haruka-Oki earthquake, Geophys. Res., Lett., 24, 3285-3288, 1997.
Hirata, N., S. Sakai, Z. S. Liaw, Y. B. Tsai, and S. B. Yu, Aftershock observations of the 1999 Chi-Chi, Taiwan earthquake, Bull. Earthquake Res. Inst., Tokyo Univ., 75, 33-46, 2000.
Hopfield, H. S., Two-quadratic tropospheric refractivity profile for correcting satellite data, J Geophys. Res., 74, 4487-4499, 1969.
Hsu, Y. J., N. Bechor, P. Segall, S. B. Yu, L. C. Kao and K. F. Ma. Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake, Geophys. Res. Lett., 29, doi:10.1029/2002GL014967, 2002.
Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen. A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt: Earth Planet. Sci. Lett., 211, 287-294 , 2003.
Hu, J. C., J. Angelier, J. C. Lee, H. T. Chu, and D. Byrne, Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling, Tectonophysics, 255, 243-268, 1996.
Ji, C., D. V. Helmberger, T. R. A. Song, K. F. Ma, and D. J. Wald, Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 28, 4379-4382, 2001.
Johnson, K. M, Y. J. Hsu, P. Segall, and S. B. Yu, Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophys. Res. Lett., 28, 2285-2288, 2001.
Johnson, K .M., and P. Segall, Imaging the ramp–décollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake, Tectonophys 378. 123-139, 2004.
Kao, H., and R. J. Rau, Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone. J. Geophys. Res., 104, 1015-1033, 1998.
Kao, H., S. J. Shen, and K. F. Ma, Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res., 103, 7211-7229, 1998.
Kao, H. and W. P. Chen, The Chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349, 2000.
Kao, H., G. C. Huang, and C. S. Liu, Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: Constraints from bathymetry and seismic observations, J. Geophys. Res., 105, 3059-3079, 2000.
Kao, H., and P. R. Jian, Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophys., 333, 179-198, 2001.
King, G. C. P., R. S. Stein, and J. Lin, Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935-953, 1994.
Langbein, J., and H. Johnson, Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, 591-603, 1997.
Larson, K., R. Burgmann, R. Bilham, and J. Freymueller, Kinematics of the India-Eurasia collision zone from GPS measurements, J. Geophys. Res., 104, 1077-1093, 1999.
Lee, J. C., H. T. Chu, J. Angelier, Y. C. Chan, J. C. Hu, C. Y. Lu, and R. J. Rau, Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi, Taiwan earthquake : influence from inherited fold belt structures, J. Struct. Geol. 24, 173-192, 2002.
Lee Y. H., W. Y. Wu, T. S. Shih, S. T. Lu, M. L. Shieh, and H. C. Cheng, 921 Chi-Chi earthquake surface deformation features - North of Beifung bridge. Central Geological Survey Special Publication No. 12, Special Issue for Chi-Chi earthquake, p.17-60, 1999.
Lin, C. H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophys., 324, 189-201, 2000
Liu, C. C., The Ilan Plain and the southwestward extending Okinawa Trough, J. Geol. Soc. China, 3, 183-193, 1995.
Loevenbruck A., R. Cattin, X. Le Pichon, M. L. Courty, and S. B. Yu, Seismic cycle in Taiwan derived from GPS measurements. C.R. Acad. Sci. II, 333, 57-64, 2001.
Lorenzetti, E., and T. E., Tullis, Geodetic predictions of a strike-slip fault model: implications for intermediate- and short-term earthquake prediction, J. Geophys. Res., 94, 12341-12361, 1989.
Ma, K. F., J. Mori, S. J. Lee, and S. B Yu, Spatial and temporal slip distribution of the Chi-Chi, Taiwan, earthquake from strong motion, teleseismic and GPS data, Bull. Seism Soc. Am., 91, 1069-1087, 2001.
Mao, A., C. G. A. Harrison, and T. H. Dixon, Noise in GPS coordinate time series, J. Geophys. Res., 104, 2797-2816, 1999.
Marone, C. J., C. H. Scholtz, and R. Bilham, On the mechanics of earthquake afterslip., J. Geophys. Res., 96, 8441-8452, 1991.
Marone, C., Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev, Earth Planet. Sci., 26, 643-696, 1998.
Matsu’ura M., and D. D. Jackson and A. Cheng, Dislocation model for aseismic crustal deformation at Hollister, California, J. Geophys. Res., 91, 12661-12674, 1986.
Matsu’ura M., and T. Sato, A dislocation model for the earthquake cycle at convergent plate boundaries, Geophys, J. Int., 96, 23-32, 1989.
McGuire, J. J., and P. Segall, Imaging of aseismic fault slip transients recorded by the dense geodetic networks, Geophys. J. Int., 155, 778-788, 2003.
Mikumo, T., Y. Yagi, S. K. Singh, and M. A. Santoyo, Coseismic and postseismic stress changes in a subducting plate: possible stress interaction between large interplate thrust and intraplate norml-faulting earthquakes, J. Geophys. Res., 107, doi:10.1029/2001JB000446, 2002.
Mindlin, R. D., Force at a point in the interior of a semi-infinite solid, Physics, 7, 195-202, 1936.
Miyazaki, S., J. J. McGuire, and P. Segall, A transient subduction zone slip episode in southwest Japan observed by the nationwide GPS array, J. Geophys. Res., 108, doi:10.1029/2001JB000456, 2003.
Mouthereau F., O. Lacombe, B. Deffontaines, J. Angelier, and S. Brusset. Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophys., 333, 293-322, 2001.
Nikolaidis, R., Observation of geodetic and seismic deformation with the Global Positioning System, Ph.D. dissertation, Univ. of Calif. San Diego, 249pp., 2002.
Nur, A., and G. Mavko, Post-seismic viscoelastic rebound, Science, 183, 204-206, 1974.
Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seism Soc. Am., 75, 1135-1154, 1985.
Parsons, T., and D. Dreger, Static-stress impact of the 1992 Landers earthquake sequences on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California, Geophys. Res. Lett., 27, 1949-1952, 2000.
Parsons, T., Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis, J. Geophys. Res., 107, doi:10.1029/2001JB001051, 2002.
Peltzer, G., P. Rosen, F. Rogez, and K. Hudnut, Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273, 1202-1206, 1996.
Pollitz F. F., Postseismic relaxation theory on the spherical earth, Bull. Seismol. Soc. Am., 82, 422-453, 1992.
Pollitz, F. F., R. Burgmann, and P. Segall, Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake, J. Geophys. Res., 103, 26975-26992, 1998.
Pollitz, F. F., G. Peltzer, and R. Burgmann, Mobility of continental mantle: evidence from postseismic geodetic observations following the 1992 Landers earthquake., J. Geophys. Res., 105, 8035-8054, 2000.
Pollitz, F. F, Viscoelastic shear zone model of a strike-slip earthquake, J. Geophys. Res., 106, 26541-26560, 2001.
Pollitz, F. F., C. Wicks, and W. Thatcher, Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 Hector Mine earthquake, Nature, 293, 1814-1818, 2001.
Pollitz, F. F., Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model, Geophys. J. Int., 155, 57-78, 2003.
Prescott, W. H., J. C. Savage, and W. T. Kinoshita, Strain accumulation rates in the western United States between 1970 and 1978. J. Geophys. Res., 84, 5423-5435, 1979.
Rau, R. J., and F. T. Wu, Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate sized earthquakes. TAO, 9, 755-778, 1998.
Reilinger, R. E., S. Ergintav, R. Burgmann, S. McClusky, O. Lenk, A. Barka, O. Gurkan, L. Hearn, K. L. Feigl, R. Cakmak, B. Aktug, H. Ozener, and M. N. Toksoz, Coseismic and postseismic fault slip for the 17 August 1999, M=7.5, Izmit, Turkey earthquake, Science, 289, 1519-1523, 2000.
Rice, J. R., and J. C. Gu, Earthquake after effects and triggered seismic phenomena, Pure Appl. Geophys., 121, 187-219, 1983.
Roeloffs, E., Poroelastic techniques in the study of earthquake-related hydrological phenomena, Advances in geophysics, 37, 135-195, 1996.
Rothacher, M., and L. Mervart, Bernese GPS Software V4.0 Documentation, Univ. Bern, Switzerland, 418 pp., 1996.
Ruina, A., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359-10370, 1983.
Rundle, J. B., and D. D. Jackson, A kinematic viscoelastic model of the San Francisco earthquake of 1906, Geophys. J. Roy. Astron. Soc., 50, 441-458, 1977.
Rundle, J. B., Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth, J. Geophys. Res., 87, 7787-7796, 1982.
Sasstamoinen, I. I., Contribution to the theory of atmospheric refraction, Bulletin Geodesique, 107, p.13-34, 1973.
Savage, J. C. 1983, A dislocation model of strain accumulation and release at a subduction zone, J Geophys. Res., 88, 4984-4996, 1983.
Savage, J. C., Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models, J. Geophys. Res., 95, 4873-4879, 1990.
Savage, J. C., M. Lisowski, and J. L. Svarc, Postseismic deformation following the 1989(M=7.1)Loma Prieta, California, earthquake, J. Geophys. Res., 99, 13757-13765, 1994.
Savage, J. C., and J. L. Svarc, Postseismic deformation associated with the 1992 Mw=7.3 Landers earthquake, southern California, J. Geophys. Res., 102, 7565-7577, 1997.
Savage, J. C., J. L. Svarc, W. H. Prescott, and K. W. Hudnut, Deformation following the 1994 Northridge earthquake (M=6.7), southern California, Geophys. Res., Lett., 25, 2725-2728, 1998.
Savage, J. C., Displacement field for an edge dislocation in a layered half-space, J. Geophys. Res., 103, 2439-2446, 1998.
Segall, P., and M. Matthews, Time dependent inversion of geodetic data, J. Geophys. Res., 102, 22391-22409, 1997.
Segall, P., R. Burgmann, and M. Matthews, Time-dependent triggered afterslip following the 1989 Loma Prieta earthquake, J. Geophys. Res., 105, 5615-5634, 2000.
Segall, P., Integrating geological and geodetic estimates of slip rate on the San Andreas fault system, International Geology Review, 44, 62-82, 2002.
Seno, R., S. Stein, and A. E. Gripp, A model for the Philippine Sea plate consistent with NUVEL-1 and geological data, J Geophys. Res., 98, 17941-17948, 1993.
Shen, Z. K., D. D. Jackson, Y. Feng, M. Cline, M. Kim, P. Fang, and Y. Bock, Postseismic deformation following the Landers earthquake, California, 28 June 1992, Bull. Seismol. Soc. Am., 84, 780-791, 1994.
Shen, Z. K., D. D. Jackson, and B. X. Ge, Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J Geophys. Res., 101, 27957-27980, 1996.
Sihng, S.J., Static deformation of a multilayered half-space by internal sources. J. Geophys. Res., 75, 3257-3263, 1970.
Spakman, W., and M. C. J. Nyst, Inversion of relative motion data for estimates of the velocity gradient field and fault slip, Earth Plan. Sci. Let., 203, 577-591, 2002.
Suppe, J, Imbricated structure of western foothills belt, southcentral Taiwan, Petro. Geol. Taiwan, 17, 1-16, 1980.
Suppe, J., C. T. Hu, and Y. J. Chen, Present-day stress distribution in western Taiwan inferred from borehole elongation. Petrol. Geol. Taiwan, 21, 1-12, 1985.
Teng, L. S. C. T. Lee, and Y. B. Tsai, An integrated lithospheric model of Taiwan, Proc. 7th Taiwan Symposium on Geophysics, 519-527, 1998.
Thatcher, W., and J. B. Rundle, A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones, J. Geophys. Res., 89, 7631-7640, 1984.
Thatcher, W., Cyclic deformation related to great earthquakes at plate boundaries, Royal Society of New Zealand Bulletin, 24, 245-272, 1986.
Tsai, Y. B., T. Teng, J. M. Chiu, and H. L. Liu, Tectonic implications of the seismicity in the Taiwan region. Mem. of the Geol. Soc. China, 2, 13-41, 1977.
Tse, S. T., and J. R. Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452-9472, 1986.
Vergne, J., R. Cattin, and J. P. Avouace, On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults, Geophys. J. Int. 147, 155-162, 2001.
Wang, C. Y., C. L. Lee, F. C. Su, M. D. Lee, M. S. Wu, C. H. Lai, and C. C. Chen, Structural mapping of the 1999 Taiwan earthquake fault by seismic reflection methods, TAO, 13, 213-230, 2002a.
Wang, C. Y., C. L. Lee, and H. Y. Yen, Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics, Geophys. Res. Lett., 29, 951-954, 2002b.
Ward, S.N., Quasi-static propagator matrices; creep on strike-slip faults. Tectonophysics, 120, 83-106, 1985.
Ward, S. N., On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: the United States, Geophys. J. Int., 134, 172-186, 1998.
Wells, D. E., N. Back, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. Tranquilla, and P. Vanicek, Guide to GPS Positioning, Canadian GPS Associates Fredericton, New Brunswick, Canada, 1986.
Willams, P. L., and H. W. Magistrale, Slip along the Superstition Hills fault associated with the November 1987 Superstition Hills, California, earthquake, Bull. Seismol. Soc. Am., 79, 390-410, 1989.
Williams, S., The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, J. Geodesy, 76, 483-494, 2003.
Wu, F. T., R. J. Rau, and D. Salzberg, Taiwan orogeny: thin skinned or lithospheric collision? Tectonophysics, 274, 191-220, 1997.
Wyatt, F. K., Displacements of surface monuments: Vertical motion, J. Geophys. Res., 94, 1655-1664, 1989.
Yang, M., and M. N. Toksoz, Time-dependent deformation and stress relaxation after strike-slip earthquake, J. Geophys. Res., 86, 2899-2901, 1981.
Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280, 1991.
Yen, H. Y., and Y. H. Yeh, Two-dimensional crustal structures of Taiwan from gravity data, Tectonics, 17, 104-111, 1998.
Yu, S. B., and C. C. Liu, Geodetic measurement of horizontal crustal deformation in eastern Taiwan, Tectonophysics, 125, 73-85, 1986.
Yu, S. B., and H. Y. Chen, Global Positioning System measurements of crustal deformation in the Taiwan arc-continent collision zone, TAO, 5, 477-498, 1994.
Yu, S. B., H. Y. Chen, and L. C. Kuo, Velocity field of GPS stations in the Taiwan Area, Tectonophys., 274, 41-59, 1997
Yu, S. B., L. C. Kuo, R. S. Punongbayan, and E. G. Ramos, GPS observation of crustal motion in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-926, 1999.
Yu, S. B. and L. C. Kuo, Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophys., 333, 199-217, 2001.
Yu, S. B., L. C. Kuo, Y. J. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, C. C. Liu, C. L. Liu, T. F. Tseng, C. S. Tsai, and T. C. Shin, Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan earthquake, Bull. Seismol. Soc. Am., 91, 995-1012, 2001.
Yu, S. B., Y. J. Hsu, L. C. Kuo, H. Y. Chen, and C. C. Liu, GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108, doi:10.1029/2003JB002396, 2003.
Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035-18,055, 1997.
Zhao, S., and S. Takemoto, Deformation and stress change associated with plate interaction at subduction zones: a kinematic modeling, Geophys. J. Int., 142, 300-318, 2000.
Zeng, Y., and C. H. Chen, Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am., 91, 1088-1098, 2001.
Zeng, Y., Viscoelastic stress-triggering of the 1999 Hector Mine earthquake by the 1992 Landers earthquake, Geophys. Res. Lett., 28, 3007-3010, 2001.
指導教授 馬國鳳、余水倍
(Kuo-Fong Ma、Shui-Beih Yu)
審核日期 2004-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明