博碩士論文 90221005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:35.172.217.40
姓名 蘇惟倫(Wei-Lun Su)  查詢紙本館藏   畢業系所 數學系
論文名稱 遲滯型細胞神經網路之行進波
(Monotonic Traveling Wave Solutions in Delayed Cellular Neural Networks)
相關論文
★ 遲滯型細胞神經網絡行進波之結構★ 網格型微分方程的行進波的數值解
★ 某類網格型微分方程行波解的存在性,唯一性及穩定性★ 某類週期性網格型微分方程行波解之研究
★ 網格型動態系統行波解之研究★ 矩陣值勢能上的sofic測度
★ 在Sofic Shift上的多重碎型分析★ 某類傳染病模型微分方程行波解之研究
★ 某類三維癌症模型之整體穩定性分析★ 三種競爭合作系統之行波解的存在性
★ 離散型Lotka-Volterra競爭系統之行波解的穩定性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1988年L.O.Chua and L.Yang 提出 Cellular Neural Networks , 我們用functional differential equations 來描述一維的Delayed Cellular Neural Networks ,cell上的任一點i表示 internal state,它的 dynamic除了和自己有關,也會受到feedback template 的影響 。其中feedback template 之 dynamic 是透過a 、α、β乘上它所對應的 output function 影響其 dynamic。
我們討論general 的 output function ,以及滿足 boundary conditions 的 traveling wave, 利用 properties of characteristic equation 建構 upper and lower solution,並在Banach space上定義一個 operator,利用operator的四個特性和 monotone iteration method,證明小於臨界速度時traveling wave存在滿足boundary conditions 的 non-decreasing solution 。
摘要(英) This paper is concerned with the existence of monotonic traveling wave solutions of cellular neural networks distributed in the one-dimensional integer lattice Z.
The dynamics of each given cell depends on itself and its neighbor cells with instantaneous feedback.The profile equation of the infinite system of ordinary differential equations can be written as a functional differential equation in mixed type.
By using the monotone iteration method, we show the existence of non-decreasing traveling solutions when the speed is negative enough.
關鍵字(中) ★ 細胞神經網路
★ 遲滯型
關鍵字(英) ★ Delayed Cellular Neural Networks
★ Monotonic Traveling Wave
論文目次 Abstract..................................................................1
1.Introduction............................................................2
2.PropertiesofCharacteristicEquation......................................5
3.ConstructionofUpperandLowerSolution.....................................9
4.ProofoftheMainTheorem..................................................15
5.TravelingWavesofDCNNwithStandardOutputFunction.........................20
References...............................................................27
參考文獻 [1] S.-N. Chow, J. Mallet-Paret, and W. Shen,
Traveling waves in lattice dynamical systems,
J. Diff. Eqns., 149 (1998), pp. 248-291.
[2] L. O. Chua,
CNN: A Paradigm for Complexity,
World Scientific Series on Nonlinear Science, Series A,
Vol. 31, World Scientific, Singapore, 1998.
[3] L. O. Chua and T. Roska,
The CNN paradigm,
IEEE Trans. Circuits Syst., 40 (1993), pp. 147-156.
[4] L. O. Chua and L. Yang,
Cellular neural networks: Theory,
IEEE Trans. Circuits Syst., 35 (1988), pp. 1257-1272.
[5] L. O. Chua and L. Yang,
Cellular neural networks: Applications,
IEEE Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
[6] T. Erneux and G. Nicolis,
Propagation waves in discrete bistable reaction-diffusion
systems, Physica D, 67 (1993), pp. 237-244.
[7] I. Gyori and G. Ladas,
Oscillating Theory of Delay Differential Equations with
Applications, Oxford University Press, Oxford, 1991.
[8] C.-H. Hsu and S.-S. Lin,
Existence and multiplicity of traveling waves in a lattice
dynamical system,
J. Diff. Eqns., 164 (2000), pp. 431-450.
[9] C.-H. Hsu, S.-S. Lin and W. Shen,
Traveling waves in cellular neural networks,
Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319.
[10] C.-H. Hsu and S.-Y. Yang,
On camel-like traveling wave solutions in
cellular neural networks,
preprint, 2002.
[11] H. Hudson and B. Zinner,
Existence of traveling waves for a generalized discrete
Fisher's equations,
Comm. Appl. Nonlinear Anal., 1 (1994), pp. 23-46.
[12] J. Juang and S.-S. Lin,
Cellular neural networks: mosaic pattern and spatial chaos,
SIAM J. Appl. Math., 60 (2000), pp. 891-915.
[13] J. P. Keener,
Propagation and its failure in coupled systems of
discrete excitable cells,
SIAM J. Appl. Math., 47 (1987), pp. 556-572.
[14] J. Mallet-Paret,
The global structure of traveling waves in spatial
discrete dynamical systems,
J. Dyn. Diff. Eqns., 11 (1999), pp. 49-127.
[15] L. Orzo, Z. Vidnyanszky, J. Hamori and T. Roska,
CNN model of the feature linked synchronized activities
in the visual thalamo-cortical system,
Proc. 1996 Fourth IEEE Int. Workshop on CNN and
Their Applications, pp. 291-296, Seville, Spain,
June 24-26, 1996.
[16] P. Thiran, K. R. Crounse, L.O. Chua, and M. Hasler,
Pattern formation properties of autonomous cellular neural networks,
IEEE Trans. Circuit Syst., 42 (1995), pp. 757-774.
[17] P. Thiran,
Dynamics and Self-Organization of Locally Coupled
Neural Networks,
Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1997.
[18] F. Werblin, T. Roska and L.O. Chua,
The analogic cellular neural network as a bionic eye,
Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
[19] P. Weng and J. Wu,
Deformation of traveling waves in delayed cellular neural
networks, preprint, 2001.
[20] J. Wu and X. Zou,
Asymptotical and periodic boundary value problems of mixed FDEs
and wave solutions of lattice differential equations,
J. Diff. Eqns., 135 (1997), pp. 315-357.
[21] B. Zinner,
Existence of traveling wavefront solutions for discrete
Nagumo equation, it J. Diff. Eqns., 96 (1992), pp. 1-27.
指導教授 許正雄(Cheng-Hsiung Hsu) 審核日期 2003-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明