博碩士論文 90221011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.231.229.89
姓名 巫世榮(Shih_Rung Wu)  查詢紙本館藏   畢業系所 數學系
論文名稱 二維品質度量之直接與間接參數估計
(Direct and Indirect parametric Estimations of Two Dimentional Quality Measures)
相關論文
★ 定點離散核估計★ 密度函數核估計之差的極限分布及其應用
★ 密度函數的直接核估計與間接核估計★ 前二階樣本動差之函數在m相關平穩過程上之統計推論
★ 平穩過程高階動差之極限分佈及應用★ 統計模型參數和之估計
★ 隨機過程參數和之估計★ 二組件組合產品之故障率的非母數估計
★ 穩定性密度函數之核估計★ 柏努力條件下常態分布之參數估計
★ (X,Y)及max{X,Y}之分布及特徵函數之估計★ 布朗運動之雙曲正弦與雙曲餘弦變換
★ 布朗運動及布阿松過程之變異數分析★ 布朗運動之線性和二次動向函數的同值檢定
★ 兩個獨立的基本Lévy隨機過程之極值過程★ 常態及二項混合模型之最大概似估計式的漸近最優性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在工業統計上,產品品質的度量方法有很多,例如製程能力指標(Process Capability Indices)、故障率(Hazard Rates)及平均剩餘壽命(Mean Residual Life)等。通常產品之二維品質,都有二種表示方式,也因此有二種估計方式,本文主要目的在比較此二種估計方法之優劣。
摘要(英) In the industrial statistics , there are many measurable ways(example: Process Capability indices、Hazard Rates、Mean Residual Life、etc…) in quality control.
In generality , product have two reports in the two-dimensional quality. Thus , they have two estimable ways. In this paper , we will compare fit and unfit in this two estimable ways.
關鍵字(中) ★ 最大概似估計
★ 間接參數估計
★ 中央極限定理
★ 直接參數估計
關鍵字(英) ★ Maximum likelihood estimator
★ Central limit theorem
★ Indirect parametric estimation
★ Direct parametric estimation
論文目次 第一節 簡介………………1
第二節 製程能力指標…… 4
第三節 故障率……………19
第四節 平均剩餘壽命……23
第五節 結論………………26
參考文獻……………………27
參考文獻 [1] Andersen,P.K., Borgan,O., Gill,R.D. and Keiding,N.(1993). Statistical
methods based on counting process. Springer-Verlag.
[2] Arnold,B.C. and Zahedi,H.(1988). On multivariate mean remaining life
functions. Journal of Multivariate Analysis, 25, pp.1-9.
[3] Bothe,D.R.(1997). Measuring process capability. McGraw-Hill.
[4] Boyles,R.A.(1996b). Multivariate process analysis with lattice data.
Technometrics, 38, pp.37-49.
[5] Chan,L.K., Cheng,S.W. and Spring,F.A.(1988b). A new measure of process
capability Cpm. Journal of Quality Technology 20, pp.162-175.
[6] Chan,L.K., Cheng,S.W. and Spring,F.A.(1991). A multivariate measure of
process capability. International Journal of Modeling and Simulation 11,
pp.1-6.
[7] Chen,H.(1994). A multivariate process capability index over a rectangular
solid tolerance zone. Statistica Sinica 4, pp.749-758.
[8] Fleming,T.R. and Harrington,D.P.(1991). Counting process and survival
analysis. Wiley.
[9] Gupta,R.D. and Kundu,D.(1999). Generalized exponential distributions.
Austral. and New Zealand J. Statiat., 41, 2, pp.173-188.
[10] Huang,J.Z., Kooperberg,C., Stone,C.J. and Truong,Y.K.(2000). Functional
anova modeling for proportional hazards regression. Ann. Statist., 28, 4,
pp.961-999.
[11] Juran,J.M., Gryna,F.A. and Bingham,R.S.(1974). Quality control handbook.
Mcgraw-Hill.
[12] Jeong,D., Song,J and Sohn, J.(1996). Nonparameteric esitimation of
bivariate mean residual life function under univariate censoring. Jourual
of Korean Statistical society, 25, pp.133-144.
[13] Klein,J.P. and Moeschberger,M.L.(1997). Survival Analysis. Springer-Verlag.
[14] Kotz,S. and Johnson,N.L.(1993a).process capability indices. Chapman and
Hall, London,U.K.
[15] Kotz,S. and Johnson,N.L.(2002). Process capability-A review,1992-2000.
Journal of Quality Technology, pp.2-53.
[16] Kotz,s. and Lovelace,C.(1998). Introduction to process capability indices.
Arnold, London,U.K.
[17] Kuljarni,H.V. and Rattihalli,R.N.(1994). On characterization of bivariate
mean residual life function. IEEE Transations on Reliability, 38, pp.362-
364.
[18] Kuljarni,H.V. and Rattihalli,R.N.(2002). Nonparametric estimation of a
bivariate mean residual life function. JASA,97, pp907-917.
[19] Lin,D.Y. and Ying,Z.(1993). A simple nonparametric estimation of the
bivariate survival function under univariate censoring. Biometrika, 80,
pp.573-581.
[20] Meeker,W.Q. and Escobar,L.A.(1998). Statistical methods for reliability
data. Wiley.
[21] Mudholkar,G.S., Srivastava,D.K. and Freimer,M.(1995). The Exponentiated
Weibull Family : A reanalysis of the Bus-Motor-Failure data. Theoretrical
expansion of observed decreasing failure rate. Technometrics,42,1, pp.7-11.
[22] Nair,K.R.M. and Nair,U.N.(1989). Bivariate mean residual life. IEEE
Transactions on Reliability,38, pp.362-364.
[23] Nelson,W.(2000). Theory and applications of hazard plotting for censored
failure data. Technometrics, Vol 42, No 1, pp.12-25.
[24] Proschan, F.L.(2000). Theoretrical expansion of observed decreasing
failure rate. Technometrics, 42, 1, pp.7-11.
指導教授 許玉生(YU-SHENG HSU) 審核日期 2003-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明