博碩士論文 90222017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.204.189.171
姓名 羅仁佑(Jen-Iu Lo)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氦狹窄共振線的光譜分析和鹼土族原子在直流電場下的反應
(Spectral Analysis of Narrow Resonance and Responses of Alkaline-earth Atoms in DC Electric Field)
相關論文
★ 冰晶光脫附率量測★ 鋅原子在3d游離閾下光吸收絕對截面測量
★ 16K下H2O+CO2+NH3混合冰晶的光脫附反應之傅氏紅外光譜★ H2O+ CO2+ NH3 混合冰晶的光脫附質譜分析
★ 純水、純水加二氧化碳及純水加氨三種不同 冰晶在氫氣微波放電管光源照射下的總離 子脫附率★ 鎂原子與氫分子在量子干涉效應下的光譜量測
★ 鎂蒸氣中光速的變異★ UV/EUV光子對星際冰晶的光化作用
★ 極性分子與非極性分子對含CH4混合冰晶光化作用之影響★ N2 + CH4 + H2O 混合冰晶在氫氣微波放電光源照射下的光化產物
★ H2S+CO與H2S+CO2混合冰晶光化作用下含硫分子之生成機制★ VUV/EUV對類冥王星冰晶之光化作用研究
★ H2O 冰晶光子作用之溫度效應研究★ 嘧啶混合冰晶之光化作用研究
★ CO2冰晶光脫附之溫度效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對那些在解析度不夠的條件下被量得的狹窄共振線而言,除了原本熟知因解析度不夠所造成的問題外,還存在一個稱之為 column density 的效應。這個效應源自於處理實驗數據的式子無法正確的解釋所量得訊息 ; 因為處理數據式子是依據於實驗的方法而來,所以不同的實驗方法所得到的光譜將會不同。為了了解 column density effect 的影響,我們選擇了氦的這兩共振線 --- $(2,1_3)$ 和 $(2,1_4)$ --- 作為研究的對象。 然而,因為這兩共振線的線寬都小於都卜勒效應所造成的線寬變化,因此都卜勒的效應必須加入理論模擬內以資比較。但也因都卜勒效應的出現,我們發現在模擬中必須依據一定的程序。經由與實驗的比較得知,此正確的程序是: 理論計算出來的共振線需與都卜勒效應先行作計算,所得的結果再與 column density effect 再做一次計算。基於實驗與經由這個正確的模擬程序模擬出來的結果作比較,我們可將氦的這兩共振線 $(2,1_3)$ 和 $(2,1_4)$ 完全解析出來。
直流的電場效應(史塔克效應)會造成光譜上共振線的偏移、分裂、變寬和振子強度 的消長,在我們對鎂、鈣、鍶和鋇測到的光游離譜中都可看到這些基本的現象。對鎂和鈣在各自的第一游離閥上的史塔克效應,可觀測到由許多波包所組成的振盪現象(electric field induced resonances);這些波包是由許多更細小的譜線所組成。當電場改變時,觀測到的波包和其內的小譜線都有相同特性的位移。但其中有一個特別的波包 --- 正在演化的波包,其內部小譜線所被觀測到的位移現象卻是與其他波包相反;只要下一個正在演化的波包的部份被觀測到時,這個波包內的譜線的位移現象就會和其他波包內的譜線相同。而在這正在演化的波包內且在游離閥位置上的小譜線,其游離截面會有突然增大的情況,這個現象在實驗中明顯的被觀察到。
在低於第一游離閥的能量區域外,穿隧效應可在鎂和鈣的光譜中被發現。另外對於鈣、鍶和鋇在其本身的自游離態的史塔克效應,對被觀測到的能階移動情形大部分是呈現出紅位移的現象。藍位移只能偶爾被觀測到,而且位移的量並不明顯。而在游離閥上的振盪現象(electric field induced resonances),在鈣和鍶第二游離閥上的光譜可被觀察到。而在自游離態的波段中能被觀測到的最明顯史塔克效應的現象是譜線的分裂與增長,在鈣和鍶的光譜上可明顯的被觀察到。在鍶的自游離態的史塔克光譜中,能階互避的現象可被量測到。
摘要(英) For those narrow resonances observed without a good resolution, in addition to the familiar problem due to a poor instrumental resolution itself, there is another effect called ``column density effect’’ which will profoundly change the observed spectrum. This effect stemmed from the discrepancy between the formula used in dealing with experimental data over-simplifies the actual interaction; also because mathematical formulas used in dealing with data relies on experimental method incidentally, the various spectra observed by different method will be different accordingly. In order to understand about the column density effect well, we chose two of He resonances --- $(2,1_3)$ and $(2,1_4)$ --- to be our targets. It is well known that the widths of the two resonances are both narrower than Doppler broadening, hence calculation of Doppler effect has to be included into convolution in order to expect a good agreement between theory and experiment. Because takeing into account of Doppler effect, we will found out a particular convoluting procedure which has to be taken in the first place. Judged by the comparison between simulation and experimental results, the proper procedure should be that convolute theoretical resonance with Doppler effect first and then convolute with column density effect afterwards. Based on the comparison between experimental results and simulation results convoluted by the proper convolution procedure, the resonances of He $(2,1_3)$ and $(2,1_4)$ were resolved fully in this work.
The well known effects on spectral features such as --- shift, splitting, broadening and variation of oscillator strength --- due to DC electric field for the resonances, were observed in the Stark photoionization spectra of Mg, Ca, Sr and Ba. For the case of the Stark effects around the first threshold of Mg and Ca, the oscillation features (electric field induced resonances) on the ionization continuum were observed distinctly. The oscillation features were formed with many manifolds and these manifolds were constructed by a plurality of observed narrow peaks. All the similar movements for the manifolds and the narrow peaks within these manifolds were observed as field strength varied. There was a particular manifold --- evolving manifold, the movements of the narrow peaks in this manifold were different from these of another manifolds; once the part of the next evolving manifold is appeared, the movements of those narrow peaks in the manifold will be similar with these of another peaks in another manifolds. Incidently for a particular narrow peak just at the position of the apparent threshold, the cross section increased unexpectedly and soon return to a typical value as its neighboring peaks when field strength increases. This unexpected change in cross section for the particular peak can be observed clearly in our experiment.
Below the first ionization limit tunneling effect was observed in spectra of Mg and Ca. For the case of Stark effects of Ca, Sr and Ba in their autoionization region, the movements for the mostly observed autoionization resonances were red shift, but blue shift was observed just for a few resonances. The oscillation features (electric field induced resonances) above the second threshold was observed in the Stark spectra of both Ca and Sr. The most distinct phenomena for the autoionization states were peak splitting and oscillator strength sharing observed in the Stark spectra of Ca and Sr. Effect of level anti-crossing were observed in Stark spectra for the autoionization states of Sr.
關鍵字(中) ★ 自游離
★ 都卜勒效應
★ 壓力效應
★ 光吸放
★ 光游離
★ 吏塔克效應
★ 穿隧效應
關鍵字(英) ★ column density effect
★  Fano
★  autoionization
★  Ryd
論文目次 Chinese Abstract ix
English Abstract xi
Acknowledgement xiii
Contents II
List of Figures VI
I Spectral Analysis of He Narrow Resonance 1
1 Introduction 3
2 Theory 9
2.1 Slit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 photoabsorption cross section . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 photoionization cross section . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Doppler effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Pressure broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Fano profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Convolution of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Observables suitable for spectral comparison between simulation and experimental
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Experimental set-up 27
3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Minor factors and uncertainties of experimental measurements . . . . . . 28
3.2.1 Pressure of impurity . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Stray light from monochromator . . . . . . . . . . . . . . . . . . . 29
3.2.3 Offset of pressure gauges . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Offsets of I0, I and i measurements . . . . . . . . . . . . . . . . . 32
3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Results and discussions 35
4.1 Natural line profile convoluted with Doppler and Column density effects . 35
4.2 Sensitivities of spectral parameters v.s. column density effect . . . . . . . 38
4.3 Comparisons of experimental results and simulations . . . . . . . . . . . 40
4.3.1 He (2, 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 He (2, 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5 Conclusions 67
II Responses of Alkaline-earth atoms in DC Electric Field 69
6 Introduction 71
6.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Brief reviews of some basic theories of Sark effect . . . . . . . . . . . . . 74
6.2.1 Hydrogen atom model — spherical polar coordinate . . . . . . . . 74
6.2.2 Stark states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Hydrogen atom model — parabolic coordinate . . . . . . . . . . . 74
6.2.4 Field induced movement of threshold . . . . . . . . . . . . . . . . 75
6.2.5 Field induced resonances . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.6 Tunneling effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.7 Level anticrossings . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7 Experimental Set-up 81
8 Results and discussions 87
8.1 The study of Stark effects in Mg: near the ionization limit . . . . . . . . 87
8.1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.2 Movements of spectral features at different field strengths . . . . . 89
8.1.3 Unexpected large peak cross sections in photoionization spectra . 91
8.2 The study of Stark effects in Ca . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.1 Near ionization limit of Ca . . . . . . . . . . . . . . . . . . . . . . 92
8.2.2 Autoionization states of Ca . . . . . . . . . . . . . . . . . . . . . 92
8.3 Stark effects of autoionization states in Sr and Ba . . . . . . . . . . . . . 93
9 Conclusions 117
References 119
參考文獻 [1] T. K. Fang and T. N. Chang, “Determination of profile parameters of a fano resonance
without an ultrahigh-energy resolution,” Phys. Rev. A 57, 4407 (1998).
[2] R. D. Hudson and V. L. Carter, “Bandwidth dependence of measured uv absorption
cross sections of argon,” J. Op. Soc. Am. 58, 227 (1968).
[3] W. F. Chan, G. Cooper, and C. E. Brion, “Absolute optical oscillator strengths for
the electronic excitation of atoms at high resolution: Experimental methods and
measurements for helium,” Phys. Rev. A 44, 186 (1991).
[4] K. C. Prince, R. Richter, M. de Simone, M. Alagia, and M. Coreno, “Photoabsorption
cross section and ion-yield spectra of helium double-excitation resonances,” Phys.
Rev. A 68, 044701 (2003).
[5] T. N. Chang, Y. X. Luo, H. S. Fung, and T. S. Yih, “Deconvolution of atomic
photoabsorption spectra: a match between theory and experiment,” J. Chin. Chem.
Soc. 48, 347 (2001).
[6] B.H. Bransden and C.J. Joachain, in Physics of Atoms and Molecules (Prenticd Hall,
London, 2003) Chap. 4.7 Line shapes and widths, p. 217, 2nd ed.
[7] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys.
Rev. 124, 1866 (1961).
[8] B.H. Bransden and C.J. Joachain, in Physics of Atoms and Molecules (Prenticd Hall,
London, 2003) Chap. 4.7 Line shapes and widths, p. 222, 2nd ed.
[9] B.H. Bransden and C.J. Joachain, in Physics of Atoms and Molecules (Prenticd Hall,
London, 2003) Chap. 4.7 Line shapes and widths, p. 223, 2nd ed.
[10] C. D. Lin, “Classification and supermultiplet structure of doubly excited states,”
Phys. Rev. A 29, 1019 (1984).
[11] K. Schulz, G. Kaindl, M. Domke, J. D. Bozek, P. A. Heimann, A. S. Schlachter, and
J. M. Rost, “Observation of new rydberg series and resonances in doubly excites
helium at ultrahigh resolution,” Phys. Rev. Lett. 77, 3086 (1996).
[12] M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution
study of 1po double-excitation states in helium,” Phys. Rev. A 53, 1424 (1996).
[13] T N Chang, Private communication (2009).
[14] B.H. Bransden and C.J. Joachain, in Physics of Atoms and Molecules (Prenticd Hall,
London, 2003) Chap. 4.7 Line shapes and widths, p. 221, 2nd ed.
[15] B.H. Bransden and C.J. Joachain, in Physics of Atoms and Molecules (Prenticd Hall,
London, 2003) Chap. 4.7 Line shapes and widths, p. 215, 2nd ed.
[16] W. Demtroder, in Laser Spectroscopy, edited by Fritz Peter Schofer (Springer-Verlag
Berlin Heidelberg, New York, 1982) Chap. 3.3 Collision Broadening of Spectral Lines,
p. 90, 2nd ed.
[17] T N Chang, Private communication (2005).
[18] W. Demtroder, in Laser Spectroscopy, edited by Fritz Peter Schofer (Springer-Verlag
Berlin Heidelberg, New York, 1982) Chap. 3.2 Doppler Width, p. 89, 2nd ed.
[19] B. H. Bransden and C. J. Joachain, in Physics of Atoms and Molecules (Prentice
Hall, London, 2003) Chap. 4.8 The photoelectric effect, p. 225, 2nd ed.
[20] J. W. Cooper and E. B. Saloman, “Stark effect on the oscillator-strength distribution
of helium near the ionization limit,” Phys. Rev. A 26, 1452 (1982).
[21] P. F. Brevet, M. Pellarin, and J. L. Vialle, “Stark effect in argon rydberg states,”
Phys. Rev. A 42, 1460 (1990).
[22] Kenji Ito, Hiroki Masuda, Yumio Morioka, and Kiyoshi Ueda, “Stark effect for the
rydberg states of the krypton atom near the ionization threshold,” Phys. Rev. A 47,
1187 (1993).
[23] R. D. Knight and Liang guo Wang, “Stark structure in rydberg states of xenon,”
Phys. Rev. A 32, 896 (1985).
[24] B E Cole, J W Cooper, D L Ederer, G Mehlmant, and E B Saloman, “Stark effect
on autoionizing resonances in the rare gases,” J. Phys. B. 13, L175 (1980).
[25] L. Windholz, M. Musso, G. Zerza, and H. Jager, “Precise stark-effect investigations
of the lithium d1 and d2 lines,” Phys. Rev. A 46, 5812 (1992).
[26] R T Hawkins, W T Hill, F V Kowaslski, A L Schawlow, and S Svanberg, “Starkeffect
study of excited states in sodium using two-photon spectroscopy,” Phys. Rev.
A 15, 967 (1977).
[27] L. Windholz and M. Musso, “Stark-effect investigations of the sodium d − 2 line,”
Phys. Rev. A 39, 2472 (1989).
[28] K C Harvey, R T Hawkins, G Meisel, and A L Schawlow, “Measurement of the stark
effect in sodium by two-photon spectroscopy,” Phys. Rev. Lett. 34, 1073 (1975).
[29] M G Littman, M L Zimmerman T W Ducas, R R Freeman, and D Kleppner, “Structure
of sodium rydberg states in weak to strong electric fields,” Phys. Rev. Lett. 36,
788 (1976).
[30] Michael G. Littman, Myron L. Zimmerman, and Daniel Kleppner, “Tunneling rates
for excited states of sodium in a static electric field,” Phys. Rev. Lett. 37, 486 (1976).
[31] Richard Marrus and Joseph Yellin, “Electric polarizabilities of the 42p level of potassium,”
Phys. Rev. 177, 127 (1969).
[32] Richard Marrus, Douglas Mcclom, and Joseph Yellin, “Atomic-beam study of the
stark effect in the cesium and rubidium d lines,” Phys. Rev. 147, 55 (1966).
[33] Xu Chen, F. R. Huang-Hellinger, B. R. Heckel, and E. N. Fortson, “Measurement of
a linear stark interference effect on the rubidium d1 absorption line,” Phys. Rev. A
50, 4729 (1994).
[34] A. Konig, J. Neukammer, H. Hieronymus, and H. Rinneberg, “Field-ionization stark
spectra of ba rydberg atoms at high density of states,” Phys. Rev. A 43, 2402 (1991).
[35] Christian Delsart and Jean-Claude Keller, “Investigation of the stark effect in krypton
autoionizing rydberg series with the use of two-step laser excitation,” Phys. Rev.
A 28, 845 (1983).
[36] W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing
rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37,
4172 (1988).
[37] R. R. Freeman and G. C. Bjorklund, “Effects of electric fields upon autoionizing
states of sr,” Phys. Rev. Lett. 40, 118 (1978).
[38] R. R. Freeman, N. P. Econumou, G. C. Bjerklundd, and K. T. Lu, “Observation of
electric-field-induced resonances above the ionization limit in a one-electron atom,”
Phy. Rev. Lett 41, 1463 (1978).
[39] K. T. Lu, F. S. Tomkins, and W. R. S. Garton, “Configuration interaction effect on
diamagnetic phenomena in atoms: strong mixing and landau regions,” Proc. R. Soc.
Lond. A 362, 421 (1978).
[40] B. H. Bransden and C. J. Joachain, in Physics of Atoms and Molecules (Prentice
Hall, London, 2003) Chap. 6.2 The Zeeman effect, p. 302, 2nd ed.
[41] William P. Reinhardt, “A time-dependent approach to the magnetic-field-induced
redistribution of oscillator strength in atomic photoabsorption,” J. Phys. B. 16,
L635 (1983).
[42] K. A. Safinya, J. F. Delpech, and T. F. Gallagher, “Effects of electric fields on doubly
excites autoionizing rydberg states of barium,” Phys. Rev. A 22, 1062 (1980).
[43] James R. Harries, James P. Sullivan, James B. Sternberg, Satoshi Obara, Tadayuki
Suzuki, Peter Hammond, John Bozek, Nora Berrah, Monica Halka, and Yoshiro
Azuma, “Double photoexcitation of helium in s strong dc electric field,” Phys. Rev.
Lett. 90, 133002–1 (2003).
[44] K. C. Prince, M. Coreno, R. Richter, M. de Simone, V. Feyer, A. Kivimaki, A. Mihelicand,
and M. Zitnik, “Detection of the 1pe series of doubly excited helium states
below n = 2 via the stark effect,” Phys. Rev. Lett. 96, 093001 (2006).
[45] T. K. Fang, Private communication (2009).
[46] Myron L. Zimmerman, Michael G. Littman, Michael M. Kash, and Daniel Kleppner,
“Stark structure of the rydberg states of alkali-metal atoms,” Phys. Rev. A. 20, 2251
(1979).
[47] B. H. Bransden and C. J. Joachain, in Physics of Atoms and Molecules (Prentice
Hall, London, 2003) Chap. 6.1, p. 281, 2nd ed.
[48] B. H. Bransden and C. J. Joachain, in Physics of Atoms and Molecules (Prentice
Hall, London, 2003) Chap. 6.1, p. 275, 2nd ed.
[49] =., æ Ý Ú[C *Ò^«, Ph.D. thesis, »ñ ³ . (1999).
[50] W. E. Cook and T. F. Gallagher, “Dependence of rydberg-state field-ionization
thresholds on |ml|,” Phys. Rev. A. 17, 1226 (1978).
[51] Michael G. Littman, Michael M. Kash, and Daniel Kleppner, “Field-ionization processes
in excited atoms,” Phys. Rev. Lett. 41, 103 (1978)
指導教授 易台生(Tai-Sone Yih) 審核日期 2010-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明