博碩士論文 90223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.144.103.10
姓名 林彥孚(Yen-Fu Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 對位六聯苯分子薄膜方向性控制及光電性質研究
(Molecular Orientation Control in p-Hexaphenyl Films and Their Electrical/Optical Property Study)
相關論文
★ 異參茚并苯和其相關衍生物的合成 與物理性質之研究★ Cycloiptycene分子之合成與自組裝行為之研究
★ 異参茚并苯衍生物合成與性質之研究★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究
★ 含有Iptycene的 烷類雙硫醇分子的構形與金屬表面自我組合的結構★ 新型共軛高分子與含有皇冠醚的二苯乙烯發光團的合成與螢光感應之研究
★ 利用Pentiptycene及Calix[4]arene設計與合成新型之螢光感應器★ 含N-芳基取代對-二苯乙烯胺之合成與光化學性質之研究
★ Iptycene衍生物之分子與超分子晶體結構之研究★ Ⅰ.具N-苯環取代基之反式- 3 -二苯乙烯胺之合成與螢光性質之研究Ⅱ.具醯胺基與Pentiptycene之α,ω烷類雙硫醇化合物之合成
★ 取代基效應對反式-4-(N-苯基)二苯乙烯胺之光化學行為影響之研究★ 質型螢光離子感應與「取代基對等」 行為之研究
★ 利用鈀金屬催化合成含N,N-雙吡啶之三芳基胺與其對金屬離子螢光化學感應 行為之研究★ Sialyl-Tn抗原及其類似物之合成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本篇主要在研究蒸鍍對位六聯苯分子在乾淨金表面以及不同自組裝單層分子膜表面,表面沉積的有機薄膜中的分子是否因為不同的表面性質而有不同的方向性。經由反射式紅外線光譜以及NEXAFS光譜,我們已經證明對位六聯苯分子蒸鍍在乾淨金表面時分子呈現平躺狀態,而在具有自組裝分子薄膜之表面上則呈現站立的型態。這兩種不同方向性的的薄膜在X-Ray繞射圖譜也可以清楚地加以解釋,並且在螢光光譜的強度上亦有極大的差異,在分子平躺的薄膜中螢光的強度是分子呈現站立的薄膜的數十至數百倍,這非常特別的現象與分子的方向性有絕對的關係。
若在刷磨處理過的聚亞甲基薄膜上作蒸鍍對位六聯苯實驗,由原子力顯微鏡的影像並輔以反射式紅外線光譜,確信分子受到配向膜的影響,因而晶體在表面上呈現特殊方向性的生長,推論對位六聯苯分子為與表面產生最小能量的狀態,而趨向平貼於表面且順著表面高分子鏈的方向。
此時我們已然可以在金表面利用SAM修飾、乾淨金表面以及刷磨處理的高分子薄膜,取得分子站立、平躺以及平面二維方向的有機半導體薄膜,對於未來應用於有機半導體元件具有潛在的應用價值。
摘要(英) Abstract
The growth of p-hexaphenyl films by thermal evaporation on clean gold surface and self-assembled monolayer (SAM) modified gold surface was investigated by reflection absorption IR spectroscopy, NEXAFS technique and X-Ray diffraction. The results showed that p-hexaphenyl molecules oriented parallel to clean gold whereas they oriented perpendicular to SAM-modified Au surface, irrespective of the terminal functional group of the SAM involved. The film with flat-lying molecules and the film with perpendicular molecules exhibited very different fluorescence intensity, with flat-lying molecules showing 10~100 times higher intensity.
Oriented thin films of p-hexaphenyl molecules were also prepared by vacuum deposition on rubbed polymethylene surfaces. Reflection absorption IR spectra showed that the p-hexaphenyl molecules were oriented parallel to the rubbed surface. AFM microscopy showed that crystals of p-hexaphenyl are aligning perpendicular to the rubbing direction. The alignment effect may come from interaction between oriented polymer chains and the molecules.
Thus orientation control of organic semiconducting p-hexaphenyl in three dimensions can be achieved by various substrates. Use of these films in fabricating organic electronic devices will be explored further.
關鍵字(中) ★ 分子方向性控制
★ 有機半導體
★ 對位六聯苯
關鍵字(英) ★ Orientation control
★ p-Hexaphenyl
★ Organic semiconductors
論文目次 總目錄
摘要(I)
Abstract(II)
總目錄(III)
圖目錄(VII)
壹、緒論(1)
1-1有機半導體導論(1)
1-1.1傳統無機半導體理論(2)
1-1.2小分子有機半導體理論(3)
1-1.3有機半導體之材料(5)
1-1.4有機半導體薄膜製備(6)
1-1.5有機半導體之應用(8)
1-2有機薄膜分子方向性之控制(11)
1-2.1有機薄膜取向附生特性(12)
1-2.2分子自組裝特性(13)
1-3有機自組裝單層分子膜導論(14)
1-3.1烷基硫醇自組裝分子薄膜(16)
1-3.2聯苯基硫醇自組裝分子薄膜(18)
1-3.3混合單層分子薄膜(19)
貳、研究動機與方法(22)
參、實驗部分(23)
3-1實驗用藥品(23)
3-1-1合成用藥品(23)
3-1-2基材來源(23)
3-1-3清洗矽晶片用藥品(24)
3-1-4有機薄膜用藥品(24)
3-2實驗步驟(24)
3-2-1合成部分(24)
3-3薄膜製備(31)
3-3-1金片基材製備(31)
3-3-2有機自組裝單層分子薄膜製備(31)
3-3-3混合自組裝單層分子薄膜製備(32)
3-3-4磷酸基表面製備(32)
3-3-5銀炔化物表面製備(32)
3-3-6聚亞甲基薄膜製備(33)
3-3-7有機薄膜蒸鍍(33)
3-4實驗用儀器與技術(33)
3-4-1真空蒸鍍機(34)
3-4-2核磁共振光譜儀(34)
3-4-3傅立葉紅外線光譜儀(34)
3-4-4 Near Edge X-Ray Absorption Fine Structure(35)
3-4-5螢光光譜儀(36)
3-4-6 X光繞射儀(37)
3-4-7原子力顯微鏡(37)
3-4-8掃描式電子顯微鏡(39)
肆、結果與討論(40)
4-1自組裝分子薄膜系統(40)
4-1-1反射式紅外線光譜結果(40)
4-1-1.1飽和二十烷基硫醇(40)
4-1-1.2苯甲基硫醇與聯苯基硫醇(41)
4-1-1.3 16-硫醇十六烷酯磷酸(45)
4-1-1.4 銀-炔十六烷硫醇(47)
4-1-1.5混合單層分子薄膜(49)
4-1-2蒸鍍對位六聯苯薄膜結果(51)
4-1-2-1反射式紅外線光譜結果(51)
4-1-2-1.1室溫下蒸鍍對位六聯苯分子(53)
4-1-2-1.2變溫蒸鍍對位六聯苯分子(55)
4-1-2-1.3不同分子膜高溫蒸鍍結果(60)
4-1-2-2 NEXAFS光譜結果 (62)
4-1-2-3 X光繞射圖譜(65)
4-1-2-4螢光光譜結果(67)
4-1-2-5顯微鏡觀察結果(69)
4-2聚亞甲基表面之系統(72)
4-2-1反射式紅外線光譜結果(72)
4-2-2原子顯微鏡觀察結果(72)
4-2-3蒸鍍對位六聯苯薄膜結果(73)
4-2-3-1反射式紅外線光譜結果(73)
4-2-3-2顯微鏡觀察結果(76)
伍、結論(80)
陸、參考資料(82)
參考文獻 參考文獻
1.A. J. Heeger, J. Phys. Chem. B 2001, 105, 8475.
2.(a)T. Hebner, C. Wu, D. Marcy, et al., Appl. Phys. Lett. 1998, 72, 519 .(b)H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
3.F. Pschenitzha and J. Sturm, Appl. Phys. Lett. 1999, 74, 1913.
4.C. J. Dury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 1998, 73, 108.
5.J. A. Rogers, Z. Bao, and L. Dhar, Appl.Phys. Lett. 1998, 73, 294.
6.A. Pochettino, Atti Acad. Lincei Rend. XV (1), 355 (1906) and XV (2), 171(1906).
7.M. Volmer, Ann. Physik 1913, 40, 775.
8.(a)J. G. Laquindanum, H. E. Katz, A. J. Lovinger, A. Dodabalapur, Chem. Meter. 1996, 8, 2542. (b)D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 87. (c)G. Horowitz, Adv. Mater. 1998, 10, 365. (d)S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854. (e)Ch. D. Dimitrakopoulos, I. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, Adv. Mater. 1999, 11, 1372.
9.(a)D. L Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, C. Fishman, Appl. Phys. Lett. 1978, 495, 32. (b)A. K. Ghosh, T. Feng, J. Appl. Phys. 1978, 49, 183. (c)C. W. Tang, Appl. Phys. Lett. 1986, 48, 183 (d)D. Wohrle, D Meissner, Adv. Mater. 1991, 3, 129. (e)G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
10.S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, Appl. Phys. Lett. 2000, 77, 2310.
11.J Kalinowski, J. Phys. D: Appl. Phys. 1999, 32, R179.
12.(a)T. Holstein, Ann. Phys. 1959, 8, 325 and 343. (b)E. A. Silinsh, A. Klimkans, S. Larsson, V. Cápek, Chem. Phys. 1995, 198, 311. (c)E. A. Silinsh, V. Cápek, Organic Molecular Crystals. (d)G. G. Robertson, N. Aspley, R. W. Munn, Physics Reports 1980, 60, 59.
13.H. Sirringhaus, P. J. Brown, R. H. Frined, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
14.D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
15.G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State Commun. 1989, 72, 381.
16.D. D. Eley, Nature 1948, 162, 819.
17.(a)H. Sirringhaus, R. H. Friend, X. C. Li, S. C. Moratti, A. B. Holmes, N. Feeder, Appl. Phys. Lett. 1997, 71, 3871. (b)W. Li, H. Katz, A. J. Lovinger, J. G. Laguindanum, Chem. Mater. 1999, 11, 458. (c)H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787. (d)H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
18.H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
19.(a)Z. Xie, M. S. A. Abdou, X. Lu, M. J. Deen, S. Holdcroft, Can. J. Phys. 1992, 70, 1171. (b)J. H. Burroughes, C. A. Jones, R. H. Frined, Nature 1988, 335, 137. (c)H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 1993, 63, 1372.
20.I. Langmuir, J. Am. Chem. Soc. 1917, 39, 1848.
21.K. A. Blodgett, J. Am. Chem. Soc. 1935, 57, 1007.
22.R. Farchioni, G. Grosso, Organic Electronic Materials.
23.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
24.S. A. Vanslyke, C. W. Tang, Appl. Phys. Lett. 1987, 51, 913.
25.(a)Y.-Y. Noh, J.-J. Kim, Y. Yoshida, K. Yase, Adv. Mater. 2003, 15, 699. (b)K. R. Amundson, B. J. Sapjeta, A. J. Lovinger, Z. Bao, Thin Solid Films 2002, 414, 143. (c)A. M. van de Graats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirrinhhaus, R. H. Friend, Adv. Mater. 2003, 15, 495. (d)J. F. Moulin, M. Brinkmann, A. Thierry, J. C. Wittmann, Adv. Mater. 2002, 14, 436. (e)J. C. Wittmann, C. Straupé, S. Meyer, B. Lotz, P. Lang, G. Horowitz, F. Garnier, Thin Solid Films 1998, 333, 272. (f)M. Brinkmann, J. C. Wittmann, Chem, Mater. 2002, 14, 904.
26.(a)J. Paloheimo, P. Kuivalainen, H. Stubb, E. Vuorimaa, P. Yli-Lahti, Appl. Phys. Lett. 1990, 56, 1157. (b)R. M. Metzger, Acc. Chem. Res. 1999, 32, 950. (c)Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, Jr., A. M. Rawlett, D. L. Allara, J. M. Tour, P. S. Weiss, Science 2001, 292, 2303. (d)X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, Science 2001, 294, 571. (e)J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 1999, 286, 1550. (f)C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, J. M. Tour, Appl. Phys. Lett. 1997, 71, 611.
27.Y. Toda, H. Yanagi, Appl. Phys. Lett. 1996, 69, 2315.
28.J. Stöhr, M. G. Samant, J. Electron Spectrosc. Rel. Phenom. 1999, 98-99, 189.
29.X. L. Chen, A. J. Lovunger, Z. Bao, J. Sapjeta, Chem. Mater. 2001, 13, 1341.
30.C.-C. Chen, J.-J. Lin, Adv. Mater. 2001, 13, 136.
31.W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Interface Sci. 1946, 1, 513.
32.R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481.
33.E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir 1994, 10, 4103.
34.(a)D. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 54. (b)P. E. Laibinis, J. J. Hickinan, M. S. Wrighton, G. M. Whitesides, Science 1989, 245, 845. (c)Y.-T. Tao, M.-T. Lee, S.-C. Chang, J. Am. Chem. Soc. 1993, 115, 9547.
35.J. B. Brzoska, I. B. Azouz, F. Rondelez, Langmuir 1994, 10, 4367.
36.K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Science 2002, 295, 1702.
37. (a)I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, J. Am. Chem. Soc. 1996, 118, 10321. (b)M. Wells, R. M. Crooks, J. Am. Chem. Soc. 1996, 118, 3988. (c)K. Sirkar, A. Revzin, M. V. Pishko, Anal. Chem. 2000, 72, 2930. (d)J. Rao, L. Yan, B. Xu, G. M. Whitesides, J. Am. Chem. Soc. 1999, 121, 2629. (e)J. M. Brockman, A. G. Frutos, R. M. Corn, J. Am. Chem. Soc. 1999, 121, 8044. (f)Y. Dong, C. Shannon, Anal. Chem. 2000, 72, 2371.
38.(a)A. Kumar, H. A. Biebuyck, N. L. Abbott, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9188. (b)P. E. Laibinis, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9022.
39.C. A. Widrig, C. A. Alves, M. D. Poter, J. Am. Chem. Soc. 1991, 113, 2805.
40.S.-C. Chang, I. Chao, Y.-T. Tao, J. Am. Chem. Soc. 1994, 116, 6792
41.B. Liedberg, Z. Yang, I. Engquist, M. Wirde, U. Gelius, G. Götz, P. Bäuerle, R.-M. Rummel, Ch. Ziegler, W. Göpel, J. Phys. Chem. B 1997, 101, 5951.
42.C. D. Bain, G. M. Whitesides, J. Am. Chem. Soc. 1989, 111, 7164.
43.R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Lüthi, L. Howald, H. J. Güntherodt, M. Fujihara, H. Takano, Y. Gotoh, Nature 1992, 359, 133.
44.J. I. Siepmann, I. R. McDonald, Mol. Phys. 1992, 75, 255.
45.Y. T. Tao, J. Phys. Chem. 1994, 98, 7630,
46.(a)C. Hosokawa, H. Higashi,T. Kusumoto, Appl. Phys. Lett. 1993, 62, 3238. (b)G.Leising, S. Tasch, W. Graupner, In Handbook of Conducting Polymers, 2nd ed (Marcel Dekker: New York, 1997) p 847.
47.D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
48.(a)T. J. Dingemans, N. S. Murthy, E. T. Samulski, J. Phys. Chem. B. 2001, 105, 8845. (b)P. Kovacic, R. M. Lange, J. Org. Chem. 1964, 29, 2416.
49.A. Garnier, R. Yassar, G. Hajlaoui, F. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Amer. Chem. Soc. 1993, 115, 8716.
50.T. Vallant, H. Brunner, U. Mayer, H. Hoffmann, Langmuir 1998, 14, 5826.
51.K. Seshadri, S. V. Atre, Y.-T, Tao, M.-T. Lee, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 4698.
52.P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T, Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 113, 7152.
53.G. Varsanyi, Vibrational Spectra of Benzene Derivatives, 1921.
指導教授 楊吉水、陶雨台
(Jye-Shane Yang、Yu-Tai Tao)
審核日期 2003-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明