博碩士論文 90223040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.231.228.109
姓名 吳季融(Ji-Rung Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究
(Atmosphere volatile organic pollutants automatic analyzed system development research )
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 大體積固相微萃取水中揮發性有機污染物★ 大體積固相微萃取技術應用於被動式空氣採樣及動力學探討
★ 以Heart-cut技術配合單偵檢器發展氣相層析“剪裁(tailoring)”技術★ 以質譜儀同時分析C3 – C12揮發性臭氧前驅物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本論文主要探討不同種類與孔徑的分子篩吸附劑對於空氣中揮發性有機物的選擇性與吸附能力;吸附劑共包含了四種不同的商業化碳分子篩吸附劑與兩種自行合成的矽分子篩吸附劑,製備單一吸附劑吸附管或組合式吸附管,搭配本實驗室自行開發之前濃縮系統,針對揮發性有機物進行量測。利用一已知濃度且包含56個物種分別為C2-C12之混合氣體做為樣品來源,研究各吸附管之吸附能力與選擇性。由於無法找到一吸附劑對於C3-C12物種皆具有良好的捕捉能力,故組合數種吸附劑形成一多重床吸附管,多重床吸附管則對於C3-C12物種皆具有一致的捕捉效率。
此外本研究也測試了兩種自行合成之矽分子篩吸附劑與商業化吸附劑作為比較,所合成之矽分子篩吸附劑分別為MCM-41與MCM-48,其孔洞大小各自為2.5 nm與2.8 nm,而商業化吸附劑孔洞則小於1.5 nm。其結果正如同所預測的,大孔洞的分子篩對分子小於C8-C10範圍的VOCs捕捉能力較差。相對地大孔洞的矽分子篩吸附劑則對大分子的物種有較佳的捕捉能力,大致上對於C8以上的物種,具有優良的捕捉能力。由以上結果可推論分子篩的孔洞大小決定了其吸附能力與選擇性。
本論文的第二部份則是針對台灣中部地區VOCs垂直濃度分佈之結果作討論;過去中部地區常發生季節性高臭氧問題,而高臭氧的來源可能是來自於上風處都會區所排放的VOCs與NOx經過傳輸後在下風處產生高臭氧的問題。量測過程中每一個垂直剖面是由7個繫掛於滯空氣球的Tedlar採樣袋所組成,採樣高度最高可達到距離地面1公里的高空。我們利用長生命期物種與短生命期物種之比值,作為氣團老化的證據。由數個垂直探空的結果中可以發現,VOC的濃度呈現極度不均勻的結果。一般而言靠近地表的VOC呈現較高的濃度且為較新鮮的氣團。而高層的氣團,則呈現VOC經過光化學反應後氣團老化的結果,其老化的現象對應了高臭氧的結果,驗證了高臭氧的來源是來自於上風都會區排放,經過遠距傳輸在下風處產生高臭氧的結果。
摘要(英) Abstract
This study investigated the sorption selectivity of volatile organic compounds by various types of molecular sieve materials of different pores sizes, which consisted of 4 types of commercially available carbon based sorbents as well as two types of self synthesized silicon based mesoporous materials. These sorbents were packed either individually or in combination into a 9cm 1/8” O.D. s.s. tube to form enrichment traps used in a VOC analytical system. A standard gas mixture containing 56 C2-C12 species with known mixing ratios was analyzed by the traps for testing the enrichment efficiency and selectivity for these sorbents. While no single carbon sorbent can performed wide enough range of VOC sorption from C3-C12, the combination of several sorbents to form two multi-beds with one packed with carbosieve SIII, carboxen 1000 for the PLOT column, and the other packed with carbonxen 1000, 1003, and carbotrap, in this order, for the DB-1 column, however provided a uniform sorption efficiency across C3-C12.
We also tested the sorption characteristics of two types of self-synthesized silicon based molecular sieves, which fall into the categories of MCM-41 and MCM-48 with pore sizes of 2.5 nm and 2.8 nm, respectively, significantly larger than those of carbon sorbents with pore size smaller than 1.5 nm in general. As expected, when using silicon molecular sieves poor sorption efficiencies were observed for VOCs smaller than C8-C10 region. Conversely, for molecules larger than C8-C10 region excellent trapping efficiency can be obtained, suggesting sorption selectivity and efficiency is largely controlled by the pore size.
The second part of the thesis discusses the results from a field campaign in an attempt to obtain vertical distributions of VOC concentrations in central Taiwan where seasonal high ozone regularly plagues this area. It was postulated that the transport of VOCs and NOx from urban areas to the downwind rural areas causes maximum ozone formation. As a result, vertical profiles of VOCs mixing ratios were performed in a mountainous downwind area in an attempt to shed light to the transport theory. Each vertical profile was obtained from 7 air samples in Tedlar bags fastened along the string of a balloon elevated up to 1km. We used ratios of VOC pairs of longer lifetime species to short lifetime species to suggest the age of air masses. Based on several vertical measurements it was found that the VOC mixing ratios were highly inhomogeneous vertically and exhibited dramatic layer structure. While the layer near the surface usually showed higher VOC mixing ratios in general, the age of air masses in this elevation was significantly younger than those in the upper layer where aged air mass correlating with elevated O3 suggested long-range transport from upwind VOC source areas.
關鍵字(中) ★ 揮發性有機物
★ 中孔洞分子篩
★ 臭氧前驅物
關鍵字(英) ★ VOCs
★ mesoporous molecular sieves
★ ozone precusor
論文目次 目 錄
目次 頁次
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
圖目錄 Ⅸ
表目錄 XIII
第一章 前言
1-1研究緣起 1
1-2文獻回顧 4
1-2.1揮發性有機物性質與排放源 4
1-2.2大氣條件影響揮發性有機物之濃度變化 6
1-2.3揮發性有機物之危害性 8
1-2.4揮發性有機物對於近地表臭氧生成之重要性 8
1-2.5大氣中揮發性有機物監測 10
1-2.6揮發性有機物之採樣與分析 12
1-3研究目的 17
第二章 多重床吸附管與中孔洞分子篩之吸附特性
2-1研究背景 18
2-1.1活性碳吸附劑 19
2-1.2碳分子篩吸附劑 20
2-1.3石墨炭黑吸附劑 21
2-1.4多孔聚合物吸附劑 22
2-1.5中孔洞分子篩MCM-41之介紹 23
2-2研究方法 25
2-3實驗方法與儀器裝置 26
2-3.1多重床吸附管之製備 26
2-3.2中孔洞分子篩吸附管之製備 28
2-3.3大氣中揮發性有機物量測流程 28
2-3.4前濃縮系統 29
2-3.5氣相層析儀 31
2-3.6電腦程序控制系統 33
2-3.7樣品濕化裝置 35
2-4結果與討論 36
2-4.1多重床碳分子篩吸附管 37
2-4.2中孔洞矽分子篩吸附管 41
2-4.3結論與建議 47
第三章大氣中揮發性有機化合物垂直探空量測
3-1研究背景 49
3-2研究目的 51
3-3分析儀器裝置 52
3-3.1十六聯裝自動進樣系統 53
3-3.2前濃縮儀 53
3-3.3氣相層析儀 56
3.3.4系統控制用電腦 57
3-3.5探空氣球 57
3-3.6採樣袋 58
3-3.7自動採樣裝置 58
3-4分析條件QA/QC 60
3-4.1空白實驗 60
3-4.2工作標準品 60
3-4.3定性分析 60
3-4.4定量分析 61
3-4.5分析方法之再現性 62
3-4.6採樣污染之來源 62
3-4.7數據之統計與篩選 63
3-5結果與討論 65
3-5.1光化探討 64
3-5.3結論 68
參考文獻 69
圖 目 錄
目次 頁次
圖(一) MCM-41合成反應途徑示意圖 76
圖(二) M41家族 76
圖(三) 吸附管製備過程示意圖 77
圖(四) C2-C6吸附管中吸附劑組合示意圖 78
圖(五) C6-C12吸附管中吸附劑組合示意圖 78
圖(六) MCM-41 XRD圖 79
圖(七) MCM-48 XRD圖 79
圖(八) 大氣中揮發性有機物量測之基本流程圖 80
圖(九) 前濃縮儀管路閥門組合示意圖 81
圖(十) 升溫裝置示意圖 82
圖(十一) 自動控制軟體GenieDAQ之三個主要作業視窗 84
圖(十二) GenieDAQ軟體與界面卡結合閥門等硬體示意圖 85
圖(十三) 系統管路狀態圖-Standby狀態 86
圖(十四) 系統管路狀態圖-Trapping狀態 87
圖(十五) 系統管路狀態圖-Dry Purge狀態 88
圖(十六) 系統管路狀態圖-Injection狀態 89
圖(十七) 系統管路狀態圖-By pass狀態 90
圖(十八) 自動化前濃縮系統與氣相層析儀分析時序示意圖 91
圖(十九) 濕化罐實體圖 92
圖(二十) 多重床吸附管之空白實驗層析圖 93
圖(二十一) PLOT column中個別吸附管之感應因子 94
圖(二十二) DB-1 column中個別吸附管之個別感應因子 95
圖(二十三) Carbotrap吸附管捕捉工作標準品之層析圖譜 96
圖(二十四) MCM-41與多重床吸附管捕捉工作標準品之層析圖譜比較 97
圖(二十五) MCM-41在不同溫度脫附所得之結果與多重床吸附管之比較 98
圖(二十六) MCM-48與多重床吸附管捕捉工作標準品之層析圖譜比較 99
圖(二十七) MCM-48混合玻璃珠與多重床吸附管捕捉工作標準品之層析圖譜比較 100
圖(二十八) MCM-48吸附管與MCM-48混合玻璃珠吸附管與多重床吸附管之RF值比較 101
圖(二十九) MCM-41吸附管之檢量線 103
圖(三十) 混合玻璃珠之MCM-48吸附管之檢量線 105
圖(三十一) 惠蓀林場地理位置圖 106
圖(三十二) 十六聯裝自動進樣系統 107
圖(三十三)皮爾特效應示意圖與降溫晶片的工作原理示意圖 108
圖(三十四) 機械手臂與降溫裝置 109
圖(三十五) 滯空氣球與氣象感知器全貌 110
圖(三十六) 採樣裝置與採樣袋全貌 111
圖(三十七) 實驗前系統之空白實驗層析圖 112
圖(三十八) 工作標準品之分析圖譜 113
圖(三十九) 系統之檢量線 114
圖(四十) 探空氣球採集之樣品分析圖譜 115
圖(四十一) 分析開始前與開始後之室內空氣層析圖譜 116
圖(四十二) 採樣袋內分別為零級空氣與真實樣品之PLOT column層析圖譜 117
圖(四十三) 採樣袋內分別為零級空氣與真實樣品之DB-1 column層析圖譜 118
圖(四十四) 10月28日下午3點垂直分佈圖 119
圖(四十五) 10月24日凌晨2點垂直分佈圖 120
圖(四十六) 10月26日中午12點垂直分佈圖 121
圖(四十七) 10月29日下午3點垂直分佈圖 122
圖(四十八) 10月20日下午4點垂直分佈圖 123
圖(四十九) 10月31日下午3點垂直分佈圖 124
圖(五十) 10月30日下午3點垂直分佈圖 125
圖(五十一) 10月29日中午12點垂直分佈圖 126
表 目 錄
目次 頁次
表(一) 美國EPA標準方法(TO)與我國EPA標準方法(NIEA)比較 127
表(二) 美國PAMS所制定之具臭氧前驅物生成潛勢之目標物種 128
表(三) 本研究中所使用之商業化吸附劑規格表 129
表(四) 本研究中氣相層析儀之各項分析條件 130
表(五) 購自Spectra gases公司之工作標準品所含之物種 131
表(六) C3-C6多重床吸附管吸附工作標準品之再現性 132
表(七) C6-C12多重床吸附管吸附工作標準品之再現性 133
表(八) 本實驗室自製多重床吸附管與商業化系統感應因子比較 134
表(九) C6-C12多重床吸附管之再現性與檢量線之趨勢線的R2 值 135
表(十) MCM-41吸附管之再現性與檢量線之趨勢線的R2值 136
表(十一) 探空實驗中氣相層析儀之各項分析條件 137
表(十二) 系統再現性之結果 138
表(十三) 本實驗室自製前濃縮系統對工作標準品檢量線所得之R2值 139
表(十四) 所挑選之VOCs物種在25℃下對OH自由基之反應數率常數 140
參考文獻 參考文獻
[1] M. Z. Jacobson, Atmospheric Pollution, Cambridge University Press, London, 85, 2002.
[2].環保署空保處網站,http://www.epa.gov.tw/F/index.htm
[3] Radian Corp. “Control techniques for volatile organic emissions from stationary source” USEPA, EPA-450/2-78-022, 1978.
[4] W. C. Edwards “VOC emissions from major organic chemical plants in Canada” 84th Annual. Meeting, A&WMA, B.C, Columbia, 1991.
[5] J. C. Chow, J. G. Watson, D. H. Lowenthal, R. T. Egami, P. A. Solomon, R. H. Thruillier, K. L. Magliano and A. J. Ranzieri “Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone episodes” Atmos. Environ. 32 (1998) 2835-2844
[6] 江右君,1993 “台北地區空氣中揮發性有機物特性與污染源分析”,台灣大學環工所碩士論文。
[7] 許逸群,2000 “臭氧高濃度區揮發性有機物特徵與排放源關聯性研究”,成功大學環工所博士論文。
[8] A. R. Mackenzie, R. M. Harrison “The Role of biogenic Hydrocarbons in the production of Ozone in Urban plumes in Southeast England” Atmos. Environ. 25A (1991) 351-359
[9] T. B. Ryerson, M. Trainer, J. S. Holloway, D. D. Parrish, L. G. Huey, D. T. Sueper, G. J. Frost, S. G. Donnelly, S. Schauffler, E. L. Atlas, W. C. Kuster, P. D. Goldan, G. Hubler, J. F. Meagher, F. C. Fehsenfeld “Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies” Science 292 (2001) 719-723
[10] 李青勝,1990 “即時氣象資訊應用再空氣品質分析與實驗”,行政院環境保護署。
[11] B. Rappengluck, P. Fabian, P. Kalabokas, L. G. Viras and I. C. Ziomas “Quiasi-continuous measurements of non-methane hydrocarbons (NMHC) in the greater Athens area during MEDCAPHOT-TRACE” Atmos. Environ. 32 (1998) 2103-2121
[12] J. L. McElroy, T. B. Smith “Vertical pollutant distributions and boundary layer structure observed by airborne lidar near the complex Southern California coastline” Atmos. Environ. 20 (1986) 1555-1566
[13] A publication of the AIR NOW homepage of the USEPA : http://www.epa.gov/airnow/health/smog.pdf EPA-452/K-99-001 July, 1999.
[14] R. Atkinson “Gas- phase tropospheric chemistry of organic compounds: a review” Atmos. Environ. 24A (1990) 1-41
[15] T. Lahre “Cancer Risks form air toxic in urban areas” 81st Annual Meeting of APCA, Dallas, Texas, June, 19-24, 1998.
[16] D. A. Levaggi, W. Sia “Gaseous toxics monitoring in the San Francisco Bay Area: a Revies and Assessment of Four years of Data” 84th Annual Meeting of A&WMA, Vancouver, B. C., Columbia, 1991.
[17] L. F. De “Trends in ground level ozone concentrations in the European Union” Environmental Science & Policy 3 (2000) 189-199
[18] K. C. Heidorn, and D. Yap “Asynoptic Climatology for Surface Ozone Concentration in Southern Ontario” Atmos. Environ. 20 (1986) 696-703
[19] 蔡政雄,2001,臭氧前趨物連續監測與臭氧生成之光化學探討,中央大學化學所碩士論文。
[20] “Rethinking the Ozone in Urban and Regional Air Pollution” National Academy od Sciences,Washington D.C. 1991.
[21] W. L. Chameides, F. Fehsenfeld, M. O. Rodgers, C. Cardelino, J. Martinez, D. Parrish, W. Lonneman, D. R. Lawson, R. A. Rasmussen, P. Zimmerman, J. Greenberg, P. Middleton, T. Wang “Ozone precursor relationships in the ambient air” J. Geophy. Res. 97 (1992) 6037-6055
[22] F. M. Bowman, J. H. Seinfeld “Ozone productivity of atmospheric organics” J. Geophy. Res. 99 (1994) 5309-5324
[23] W. P. L. Carter “A detailed mechanism for the gas-phase atmospheric reactions of organic compounds” Atmos. Environ 24A (1996) 481
[24] 美國EPA, PAMS網站http://www.epa.gov/oar/oaqps/pams/
[25] T. Laurila, H. Hakola “Seasonal cycle of C2-C5 hydrocarbons over the Baltic Sea and northern Finland” Atmos. Environ. 30 (1996) 1597-1607
[26] T. F. Dann, D. K. Wang “Ambient air benzene concentrations in Canada (1989-1993) seasonal and day of week variations, trends and source influences” J. Air Waste Manage. Assoc. 45 (1995) 695-702
[27] W. -H. Ding, J. -L. Wang “Spatial concentration profiles of C2-C6 hydrocarbons in the atmosphere of Taipei metropolitan area” Chemosphere 37 (1998) 1187-1195
[28] USEPA “Compendium Method TO-14: Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography”
[29] D. Helmig and J. P. Greenberg “Automated in-situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping” J. Chromatogr. A 677 (1994) 123-132
[30] USEPA “Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS)”
[31] USEPA “Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption Gas Chromatography/Mass Spectrometry (GC/MS)”
[32] M. Harper “Sorbent trapping of volatile organic compounds from air” J. Chromatogr. A 885 (2000) 129-151
[33] USEPA “Compendium Method TO-2: Determination of Volatile OrganicCompounds in Ambient Air Using ActiveSampling Onto Sorbent Tubes”
[34] J. Dewulf, H. Van Langenhove “Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements” Water Res. 31 (1997) 1825-1838
[35] E. Brancaleoni, M. Scovaventi, M. Frattoni, R. Mabilia, and P. Ciccioli “Novel family of multi-layer cartridges filled with a new carbon adsorbent for the quantitative determination of volatile organic compounds in the atmosphere” J. Chromatrgr. A 845 (1999) 317-328
[36] C. Monn, M. Hangatner “Passive sampling of aromatic volatile organic compounds in ambient air in Switzerland” Environ. Technol. 17 (1996) p301-307
[37] E. Matisova and S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. Chromatogr. A 707 (1995) 145-179
[38] F. Derby Shire, M. Jagtoyen, B. McEnaney, A. Sethuraman, J. M. Stencel and M. W. Thwaites “The production of activated carbons form coals by chemical activation” Abstracts of Papers of the American Chemical Socienty 202 (1991) 48
[39] C. Pierce, R. N. Smith, J. W. Wiley and H. Cordes “Adsorption of water by carbon” J. Am. Chem. Soc. 73 (1951) 4551
[40] E. Matisova and S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. Chromatogr. A 707 (1995) p145-179
[41] F. Brunner, G. Crescentini, L. Lattanzi and F. Mangani “Capillary gas-chromatography with graphitized carbon black” J. Chormatography 517 (1990) 123-129
[42] W. Engewald, J. Porschmann and T. Welsh “Graphitized thermal carbon-black as a shape selective stationary phase in GC” Chromatographia 30 (1990) 537-542
[43] W. R. Betz and W. R. Supina “Determination of the gas chromatographic performance-characteristics of several graphitized carbon blacks” J. Chromatography 471 (1989) 105-112
[44] N. V. Kovaleva and K. D. Scherbakova “Carbon adsorbents in gas adsorption chromatography.” J. Chromatography 520 (1990) 55-68
[45] K. K. Unger “Porous carbon packings for liquid chromatography” Anal. Chem. 55 (1983) 361A
[46] M. T. Gilbert, J. H. Knox and B. Kaur “Porous Glassy-Carbon, a new columns packing material for gas-chromatography and High-Performance Liquid-Chromatography” Chromatographia 16 (1982) 138-148
[47] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Hanigen “ Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids” J. Am. Chem. Soc. 104 (1982) 1146-1147
[48] M. E. Davis, S. Saldarriaga, C. Montes, J. Graces and C. Crowder “A molecular sieves with eighteen-membered rings” Nature 311 (1988) 698-699
[49] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism” Nature 359 (1992) 710-712
[50] N. K. Raman, M. T. Anderson, C. J. Brinker “Template-based approaches to the preparation of amorphous, nanoporous silicas” Chem. Mater. 8 (1996) 1682-1701
[51] C. T. Kresge, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, J. S. Beck, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker “M41S-A new family of mesoporous molecular-sieves prepared with liquid-crystall templates” Studies in Surface Science and Catalysis 192 (1995) 11-19
[52] E. Matisova, S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. of chromatogr. A 707 (1995) 145-179
[53] H. Zhao, K. L. Nagy, J. S. Waples and G. F. Vance “Surfactant-templated mesoporous silicate materials as sorbents for organic pollutants in water” Environ. Sci. Technol. 34 (2000) 4822-4827
[54] J. M. Sanchez and R. Sacks “On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume air sample” Anal. Chem. 75 (2003) 978-985
[55] Hill, H. H. and Mcminn, D. G. Detectors for Capillary chromatography, p1-21. John Wiley & Sons Inc. (1992)
[56] Sternberg, J. C., Gallaway, W. S. and Jones, T.L. Gas chromatography, p231-267. Academic Press, New York, (1962)
[57] 楊廣苓,1997,熱脫附/氣相層析儀法分析環境中微量氣態碳氫化合物方法評估與環境實測,清華大學原科所博士論文。
[58] 周順盈,1999,非甲烷碳氫化合物及鹵碳化物自動化分析系統之建立及改進,中央大學化學所碩士論文。
[59] J. P. Greenberg, A. Guenther, P. Zimmerman, W. Baugh, C. Geron, K. Davis, D. Helmig and L. F. Klinger “Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer” Atmos. Environ. 33 (1999) 855-867
[60] K. M. Beswick, T. W. Simpson, D. Fowler, T. W. Choularton, M. W. Gallagher, K. J. Gargreaves, M. A. Sutton and A. Kaye “Methane emissions on large scales” Atmos. Environ. 33 (1998) 3283-3291
[61] K. Sahashi, T. Hieda and E. Yamashita “Nitrogen-oxide layer over the urban heat island in OKAYAMA City” Atmos. Environ. 30 (1996) 531-535
[62] C.-L. Chen, B.-J. Tsuang, C.-Y. Tu, W.-L. Cheng, M.-D. Lin “Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan” Atmos. Environ. 36 (2002) 2049-2059
[63] 蔡政雄,2001,臭氧前趨物連續監測與臭氧生成之光化學探討,中央大學化學所碩士論文。
[64] 環保署空保處網站,http://www.epa.gov.tw/F/index.htm
[65] J. P. Greenberg, P. R. Zimmerman “Nonmethane hydrocarbons in remote tropical, continental and marine atmospheres” J. Geophy. Res. 89 (1984) 4767-4778
[66] J. P. Greenberg, P. R. Zimmerman, B. E. Taylor, G. M. Silver, R. Fall “Sub-parts per billion detection of isoprene using a reduction gas detector with a portable gas chromatograph” Atmos. Environ. 27A(16) (1993) 2689-2692
[67] A. Guenther, W. Baugh, K. Davis, G. Hampton, P. Harley, L. Klinger, L. Vierling, P. Zimmerman, C. Baldocchi, C. Geron, T. Pierce “Isoprene fluxes measure by enclosure, relaxed eddy accumulation, surface layer gradient, Mixer layer gradient, and mixer layer gradient, and mixer layer mass balance techniques” J. Geophy. Res. 101(D13) (1996) 18555-18567
[68] A. Guenther, A. B.Guenther, P. R. Zimmerman, P. C. Harley, R. K. Monson, R. Fall “Isoprene and monoterpene emission variability: model evaluations and sensitivity analyses” J. Geophy. Res. 98(D7) (1993) 12909-12617
[69] 丁建忠,2002,自行架設光化學測站與商業化儀器平行比對及所得資料初步分析,中央大學化學所碩士論文。
指導教授 王家麟(Jia-Lin Wang) 審核日期 2003-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明